
The NES Video-Music Database: A Dataset of Symbolic Video
Game Music Paired with Gameplay Videos

Igor Cardoso
Departamento de Informática
Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

Rubens O. Moraes
Departamento de Informática
Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

Lucas N. Ferreira
Departamento de Informática
Universidade Federal de Viçosa
Viçosa, Minas Gerais, Brazil

ABSTRACT
Neural models are one of the most popular approaches for music
generation, yet there aren’t standard large datasets tailored for
learning music directly from game data. To address this research
gap, we introduce a novel dataset named NES-VMDB, containing
98,940 gameplay videos from 389 NES games, each paired with
its original soundtrack in symbolic format (MIDI). NES-VMDB is
built upon the Nintendo Entertainment System Music Database
(NES-MDB), encompassing 5,278 music pieces from 397 NES games.
Our approach involves collecting long-play videos for 389 games
of the original dataset, slicing them into 15-second-long clips, and
extracting the audio from each clip. Subsequently, we apply an
audio fingerprinting algorithm (similar to Shazam) to automatically
identify the corresponding piece in the NES-MDB dataset. Addi-
tionally, we introduce a baseline method based on the Controllable
Music Transformer to generate NES music conditioned on game-
play clips. We evaluated this approach with objective metrics, and
the results showed that the conditional CMT improves musical
structural quality when compared to its unconditional counterpart.
Moreover, we used a neural classifier to predict the game genre
of the generated pieces. Results showed that the CMT generator
can learn correlations between gameplay videos and game genres,
but further research has to be conducted to achieve human-level
performance.

CCS CONCEPTS
• Applied computing → Sound and music computing; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Dataset, Music, Video Game, Video, Music Generation

ACM Reference Format:
Igor Cardoso, Rubens O. Moraes, and Lucas N. Ferreira. 2024. The NES
Video-Music Database: A Dataset of Symbolic Video Game Music Paired
with Gameplay Videos. In Proceedings of the 19th International Conference on
the Foundations of Digital Games (FDG 2024), May 21–24, 2024, Worcester, MA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3649921.
3650011

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG 2024, May 21–24, 2024, Worcester, MA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0955-5/24/05
https://doi.org/10.1145/3649921.3650011

1 INTRODUCTION
Indie game developers typically handle every aspect of their game
themselves, from coding to visual assets. However, music and sound
effects are usually outsourced to third-party producers or sourced
from online resources (paid or open). While outsourcing audio pro-
duction might be a viable option for established indie developers,
it’s less accessible for those with hard budget constraints, particu-
larly in developing countries. To make music production for games
more democratic, one could train generative models capable of
composing music based on game data. These models could help in
many project phases, from quickly including background music in
early prototypes to guiding the composition of the final soundtrack.

Given that neural generative models are one of the most popular
methods in music generation [15], one could train one of these
models (e.g., an auto-regressive language model) to compose music
from game data. However, to the best of our knowledge, large
datasets of video game music paired with corresponding game data
are currently unavailable. In this paper, we present the NES Video-
Music Database (NES-VMDB)1, comprising 98,940 gameplay videos
from 389 NES (Nintendo Entertainment System) games, each video
paired with its respective background music in symbolic format.

The NES-VMDB is an extension of the Nintendo Entertainment
System Music Database (NES-MDB), designed for constructing
automatic music composition systems for the NES audio synthesizer
[3]. The NES-MDB dataset comprises 5,278 music pieces from 397
NES games. The NES-VMDB associates 4,070 of these pieces with
short gameplay clips from the game scenes where these musical
compositions are played. For example, the Super Mario Bros. World
1-1 music theme is paired with multiple clips of a player navigating
World 1-1.

We use gameplay videos, instead of other game data (e.g., tilemaps),
because videos are game-independent data formats that capture
sufficient information to support music composition appropriately.
In other words, gameplay videos do not rely on the internal data
representations of the game. Our objective is to enable music gen-
eration models that allow users to input a brief gameplay clip of
their own game and receive background music that complements
the scene pictured in the clip. We envision these generators being
utilized by indie game developers to generate music in different
stages of their projects, from musical sketches at early stages to
final soundtracks at later versions of the game.

To pair the NES-MDB MIDI pieces with gameplay clips, we ini-
tially obtained long-play videos from YouTube for 389 NES-MDB
games. A long-play video is a play-through from beginning to end
with no audio comments. Subsequently, we divided each video into

1https://github.com/rubensolv/NES-VMDB

https://doi.org/10.1145/3649921.3650011
https://doi.org/10.1145/3649921.3650011
https://doi.org/10.1145/3649921.3650011


FDG 2024, May 21–24, 2024, Worcester, MA, USA Igor Cardoso, Rubens O. Moraes, and Lucas N. Ferreira

Figure 1: The piano roll representation of a snippet of a piece
from the NES-MDB dataset. The horizontal axis represents
time and the vertical axis represents pitch. The color of the
notes represents their channel [3].

15-second-long clips and isolated their audio. Additionally, we syn-
thesized all MIDI files from the NES-MDB using the NES synth
provided alongside the dataset2. Finally, we employed a fingerprint-
ing algorithm to retrieve, for each 15-second audio clip, the most
similar piece among the synthesized ones. The MIDI file associated
with the retrieved piece was then matched with its corresponding
video query.

In addition to the dataset, we established a baseline generator
based on the Controllable Music Transformer (CMT) [2], a state-of-
the-art model for general music composition conditioned on video
inputs. CMT is conditioned during inference with rhythmic features
extracted from an input video. We trained it with the NES-VMDB
MIDI pieces and then generated new music by conditioning it with
rhythmic features extracted from gameplay clips. We compared the
outputs of this baseline against an unconditional CMT.

We used objective music structure metrics to compare the qual-
ity of the music produced by these methods. Results showed that
the conditional pieces have a structure more similar to human-
composed pieces than the unconditional ones. We also trained a
classifier based on the CMT architecture to predict the game genre
of the generated pieces. Results showed that the conditional CMT
was able to learn correlations between gameplay videos and game
genre, but qualitatively its pieces are still far from human-composed
ones. Thus, there are many research opportunities to improve upon
this baseline.

2 RELATEDWORK
This work is primarily related to the NES-MDB dataset [3], symbolic
music generation from videos, and music generation for video
games. In this section, we review the most relevant methods from
each of these areas.

2.1 The NES-MDB dataset
The NES-MDB dataset compiles 5,278 music pieces from the sound-
tracks of 397 NES games. Each piece features four out of the five
instrument voices of the NES synthesizer: two pulse-wave gener-
ators (P1, P2), a triangle-wave generator (TR), and a percussive
noise generator (NO). The fifth voice, an audio sample playback
channel, was excluded for simplicity. Figure 1 illustrates the piano
roll representation of a piece snippet from the NES-MDB dataset.

2https://github.com/chrisdonahue/nesmdb

All pieces were extracted from the assembly code of NES games,
ensuring precise timings and parameter values necessary for an
accurate reproduction of the music as it sounds in the NES system.
The dataset provides the extracted pieces in various representations,
including MIDI, music score, and VGM. It encompasses composi-
tions from 296 unique composers, featuring over two million notes
in total.

2.2 Symbolic Music Generation from Videos
Neural models for generating symbolic music conditioned on videos
have garnered increasing interest in recent years. One common
challenge involves generating a monophonic composition for a
given instrument based on the movements of a musician playing
that instrument. For instance, Su et al. [12] employed a convolu-
tional neural network to encode a video of piano players and a
GAN to generate a piano piece in piano roll format. Gan et al. [9]
adopted a Transformer architecture with an encoder that processes
a video of a musician playing an instrument (e.g., piano, bassoon,
cello, etc.) and a decoder that generates a symbolic monophonic
composition matching the movements in the performance. Su et al.
[13] investigated a similar problem but with a VQ-VAE model that
generates compositions directly as an audio signal instead of a
symbolic sequence.

Another related problem is generating polyphonic music for a
general video. For instance, Di et al. [2] introduced a transformer-
based approach called ControllableMusic Transformer (CMT). CMT
extracts music features from MIDI files to train a music language
model. During inference, rhythmic features are replaced with those
from a given video to enable controllable generation. An interesting
aspect of this work is that it does not require a dataset of videos
pairedwithmusic. Zhuo et al. [18] proposed an alternative approach
called V-MusProd, which learns mappings from video to music
using a dataset of video-music pairs. As part of this work, they
introduced a dataset called SymMV.

2.3 Symbolic Music Generation for Video
Games

Various approaches have been proposed for generating music in
the context of video games. For instance, Williams et al. [16] em-
ployed a rule-based system to generate soundtracks by transform-
ing pre-generated melodies, aligning them with the emotional con-
text of annotated game scenes. Scirea et al. [11] used evolutionary
algorithms in MetaCompose, a framework designed to generate
real-time background music for games using an evolutionary al-
gorithm. Cardinale and Withington [1] designed a system called
HarmonyMapper combining the MAP Elites algorithm with Neo-
Riemannian music theory to generate diverse chord sequences in
terms of the emotions they aim to evoke. Ferreira and Whitehead
[8] introduced a dataset of piano arrangements for video game
soundtracks and a learning method to compose game music with a
specified sentiment. Ferreira et al. [6, 7] extended this work by in-
corporating search-based decoding methods to enhance the quality
and emotional content of the generated pieces.

https://github.com/chrisdonahue/nesmdb


The NES Video-Music Database: A Dataset of Symbolic Video Game Music Paired with Gameplay Videos FDG 2024, May 21–24, 2024, Worcester, MA, USA

3 THE NES-VMDB DATABASE
Our goal with the NES-VMDB database is to enable the composition
of background music for games from gameplay clips. The initial
step in creating our dataset was to exclude any MIDI file from the
NES-MDB dataset that doesn’t represent a music file, such as sound
effects. To accomplish this, we defined a complete piece as anyMIDI
file with a duration greater than 8 seconds. We selected 8 seconds
because it corresponds to the length of one phrase, comprising
4 bars at 120 bpm. In essence, we considered a file a piece if it
contained at least 4 bars of music at 120 bpm. This cleaning step
eliminated 1,208 MIDI files, leaving a total of 4,070 pieces.

After completing the cleaning step, we searched on YouTube for
long-play videos corresponding to each of the 397 games in the NES-
MDB dataset. For each game, our search query was constructed as
follows: “{GAME_NAME} NES World of Longplay”. World of Long-
play3 is a YouTube channel that hosts long-play videos for various
gaming platforms, including consoles, arcades, PC, etc. Currently,
they feature 1,083 videos of NES games, encompassing licensed and
unlicensed titles released in Japan, Europe, and the USA. Our search
yielded a video with 360p resolution for 389 games, with long-play
videos unavailable for only 8 games. Since our query explicitly
specified “World of Longplay”, most videos were retrieved from
this channel. For games where YouTube didn’t find a video in this
channel, but in others, we used these extra resources to compile as
many videos as possible. All clips sum up to a total of 474 hours of
video. Table 1 lists the top 5 channels by the number of retrieved
videos.

Table 1: Number of videos retrieved by YouTube channel. The
Other category includes 54 channels, 3 with 3 games, 6 with
2 games, and 45 with 1 games.

YouTube Channel Number of Videos

World of Longplay 303
NintendoComplete 7
Nenriki Gaming Channel 6
30-30 Club 4
Ice Jacket 3
Other 66

In all channels, the videos consist of direct screen captures from
an NES emulator. They have no voice-overs or edits, except for the
World of Longplay videos, which have text labels with metadata and
the channel icon on top of the first few frames. Figure 2 illustrates
an initial frame from the Contra long-play on theWorld of Longplay
channel.

After downloading all long-play videos, we divided each one into
non-overlapping clips of 15 seconds. This segmentation yielded
98,940 short clips, with an average of 225.32 clips per game (stan-
dard deviation of 501.39). We then separated the audio tracks from
each clip. While these clips exclusively contain game audio, they
frequently mix background music and sound effects. Moreover,
some clips may capture moments of scene transitions, potentially
including the end of the piece from the first scene and the beginning
3https://www.youtube.com/channel/UCVi6ofFy7QyJJrZ9l0-fwbQ

Figure 2: One of the first frames of the Contra long-play from
the World of Longplay channel.

of the piece from the second scene. After the segmentation, we syn-
thesized each of the 4,070 music pieces from the NES-MDB using
the NES synthesizer provided with the dataset. These synthesized
music pieces are crucial to mapping the clips to NES-MDB MIDI
files.

We employed an audio fingerprinting algorithm to automati-
cally associate the gameplay clips with their corresponding MIDI
files. It is worth highlighting that manually pairing the clips with
the MIDI files would be prohibitively time-consuming, given the
large volume of game clips and music pieces we have in our dataset
(474 hours of video and 4,070 music pieces). We used Dejavu4, an
open-source implementation of the Shazam algorithm [14] as our
fingerprinting algorithm. Dejavu transforms an audio clip into a dis-
tinctive acoustic fingerprint, comprising multiple hash values that
capture its unique characteristics. To generate a fingerprint, it ini-
tially segments the audio signal into short, overlapping time frames
and computes the corresponding spectrogram. It then identifies
peaks in the spectrogram, representing distinctive frequency-time
pairs, and hashes this information into a condensed code, forming
the unique fingerprint. These fingerprints, consisting of multiple
hash values, are subsequently stored in a database. To retrieve an
entry from the database, Dejavu repeats this process for an audio
query and matches its fingerprint against the stored ones.

To facilitate retrieval, we create a separate fingerprint database
for each game. Consequently, when provided with a 15-second au-
dio clip as a query, Dejavu only compared it against the fingerprints
of pieces from the game to which the query belongs. To create the
NES-VMDB dataset, we generated a query for each of the 98,940
audio clips and used Dejavu to retrieve the synthesized music piece
with the highest number of fingerprint matches.

Subsequently, we paired the MIDI file used for synthesizing the
retrieved piece with the video clip associated with that query. It is
noteworthy that Dejavu, like Shazam, exhibits robustness against
noise [14]. Therefore, even if our queries contain sound effects,
they can accurately retrieve the correct music piece. To quantify
Dejavu’s performance, we sampled 30 query results at random and

4https://github.com/worldveil/dejavu

https://www.youtube.com/channel/UCVi6ofFy7QyJJrZ9l0-fwbQ
https://github.com/worldveil/dejavu


FDG 2024, May 21–24, 2024, Worcester, MA, USA Igor Cardoso, Rubens O. Moraes, and Lucas N. Ferreira

Figure 3: CMT approach to condition music generation from
input videos [2].

manually evaluated them. Dejavu retrieved 25 results correctly and
1 incorrectly. The other 4 results were audio clips containing only
sound effects that Dejavu tried to fit with the best match from their
respective game.

4 EXPERIMENTS
Our primary goal with the NES-VMDB dataset is to support genera-
tive models that learn a mapping from videos to music. To facilitate
future research, we introduce a baseline method based on the Con-
trollable Music Transformer (CMT) Di et al. [2]. We trained our
CMT model with the MIDI files of the NES-VMDB as a music lan-
guage model (i.e., predicting the next token given a symbolic music
context). We first augmented the dataset following the method-
ology of Oore et al. [10]. We transposed each piece to every key,
increased and decreased the tempo by 10%, and adjusted the veloc-
ity of all notes by 10%. After augmentation, we encoded all these
pieces with the CMT encoding scheme. CMT quantizes a MIDI file
into sixteenth-note timesteps and, for each timestep, generates a
vector with 7 music features: token type (rhythmic or melodic),
timestep type (beat or bar), density, strength, instrument, pitch, and
duration.

We defined our CMT model with 8 transformer blocks each
containing 8 attention heads. The model’s hidden and feed-forward
inner layer sizes are 256 and 2,048, respectively. The dropout rate
in each layer is set to 10%. The input sequence length is padded to
10,000 with the <EOS> (End of Song) token. We trained this model
with all augmented pieces for 25 epochs using the Adam optimizer
and a learning rate of 1e-4, which took approximately 3 days on a
single NVIDIA GeForce RTX 4070 Ti with 12GB of memory.

After training our CMT model, we randomly selected 28 games
from the NES-VMDB dataset, and for each game, we selected 5
clips at random. We then generated a piece for each clip, yielding
140 conditioned pieces. To condition the generation, CMT replaces
the strength and density attributes of the generated tokens during
inference with strength and density values extracted from the input
video, as shown in Figure 3. It is important to highlight that while
CMT allows users to control genre and instruments, we didn’t use
these attributes.

We evaluate this conditioning approach against an unconditional
one and human-composed pieces. Thus, we used CMT to generate
140 unconditioned pieces to represent the unconditioned method.
Moreover, we selected 140 ground truth MIDI pieces (as given by

Dejavu) to represent the human method. These pieces came from
the same gameplay clips we used to generate the conditioned pieces.

4.1 Music Structure Metrics
We compared these pieces using five objective metrics calculated
with the MusPy [4] toolkit: Pitch Class Histogram Entropy, Groov-
ing Pattern Similarity, Pitch Range, Number of Unique Pitch Classes,
and Number of Notes Being Played Concurrently. All metrics rep-
resent features that can be extracted from symbolic music and are
commonly used to compare generated music to human composi-
tions [5]. Specifically, Grooving Pattern Similarity and Pitch Class
Histogram Entropy were employed to evaluate the CMT model
in its original paper [2]. The former is the mean Hamming dis-
tance of neighboring measures and helps in measuring the music’s
rhythmicity. The latter is the Shannon entropy of the normalized
note pitch class histogram and helps assess the music’s quality in
tonality. The Number of Unique Pitch Classes and Pitch Range are
extra metrics to evaluate tonality, and the Number of Notes Played
Concurrently helps evaluate harmony quality.

These metrics are useful for measuring the distance between
generated pieces and human-composed ones. Thus, the closer the
values are to those of the human pieces, the better. Table 2 reports
the average results for these metrics. Overall, the conditioned CMT
outperformed the unconditional one in all metrics, indicating that
the approach proposed by Di et al. [2] generates musical structures
closer to human-composed pieces than an unconditional method.
The Grooving Pattern Similarity is the metric in which the con-
ditioned CMT model had the lowest distance, indicating that its
generated pieces are more closely related to the human ones in
rhythm than harmony or melody.

The low distance in the Number of Notes Being Played Concur-
rently suggests that harmonically the conditioned pieces are not
too far from human pieces as well. In terms of melody, the low
distances in Pitch Class Histogram Entropy and Number of Unique
Pitch Classes but high in the Number of Notes Played Concurrently
suggest that while the conditioned pieces have a similar relative
variation (entropy) and usage of pitch classes, they do not explore
different registers of a given pitch as much as human pieces.

4.2 Game Genre Classification
To evaluate whether the generated pieces align with the game
genres of the clips they were conditioned on, we trained a neural
classifier to predict the game genre from a symbolic music piece.
For the classifier training, we categorized all 389 NES-VMDB games
by genre. We initially extracted the genre from the right panel of
each game’s Wikipedia article. If games featured multiple genres,
we kept only the first. This process yielded 40 specific genres, such
as “Block breaker”, “Vehicular combat”, and “Carnival”. This space
of classes is considerably large for the amount of data we have.
Thus, we reduced this initial list to a more manageable one.

To compile a shorter list of broader genres we searched for the
most common genres across the XBOX, PlayStation, Nintendo
Switch, and Steam online game stores. We found the following
11 genres as a result of this process: Shooters, Sports, Platformers,
RPG, Puzzle, Action, Fighting, Strategy, Simulation, Adventure, and
Racing. After compiling this broader list, we employed ChatGPT



The NES Video-Music Database: A Dataset of Symbolic Video Game Music Paired with Gameplay Videos FDG 2024, May 21–24, 2024, Worcester, MA, USA

Table 2: Objective comparison between CMT Conditioned, CMT Unconditioned, and Human-composed pieces.

Metric CMT Conditioned CMT Unconditioned Human

Grooving Pattern Similarity 0.821 0.694 0.999
Number of Unique Pitch Classes 9.840 9.043 10.755
Pitch Class Histogram Entropy 2.703 2.590 2.970
Pitch Range 41.160 37.457 50.085
Number of Notes Played Concurrently 1.311 1.214 2.055

(version 3.5) to map the 40 specific Wikipedia genres to the 11 gen-
eral ones, using the prompt “Map each specific game genre in List
A to a more general genre in List B”. Table 3 presents the results of
the mapping generated by ChatGPT.

We labeled the 389 games in our dataset with this mapping
given by ChatGPT. Figure 4 shows the distribution of examples per
genre. Shooter and Platform are the most prominent genres with
approximately 60 games each. Puzzle, Action, and Adventure are
the second most prominent, with approximately 20 games each. All
the other genres have less than 10 examples each.

Our genre classifier has a similar architecture to the CMT model
we used to generate conditional and unconditional music. The
main difference is that the genre classifier has 4 transformer blocks
instead of 8. All the other hyperparameters of the model were set
the same. The classifier was trained with the Adam optimizer for
10 epochs with a learning rate of 1e-5.

We adhered to a data split similar to the original NES-MDB
dataset: 80% for training and 20% for testing, ensuring no composer
appeared in two subsets. Originally, the NES-MDB dataset separates
10% of the data for validation, but given that our game music genre
dataset is relatively small for its number of classes, we use the
validation data for testing (we didn’t perform a validation step). The
classifier achieved a test accuracy of 29%, which is approximately
3.2 times better than a random guess (≈ 9%). This result shows that
predicting the game genre of an NES music piece is a difficult task.
In other words, when listening to different NES pieces, it is hard
to identify the game genre only by the game music. This might be
because many different genres used the same style of music during
the NES generation.

Figure 4: Distribution of genres in the NES-VMDB database.

We used our classifier to predict the genre of the 140 conditioned
and 140 human pieces generated to evaluatemusic structural quality
(see Section 4.1). It correctly predicted 22% and 34% of the genres
for the conditioned and human pieces, respectively. The genre
accuracy of the conditioned CMT pieces is 12% lower than the
human-composed ones. This result suggests that the conditioned
CMT generator can learn correlations between gameplay videos
and game music genres. However, both the music generator and the
genre classifier can be considerably improved to produce results
similar to human performance.

5 CONCLUSIONS AND FUTUREWORK
This paper presented the NES-VMDB dataset, a collection of 98,940
NES gameplay videos paired with their background music in sym-
bolic format (MIDI). Our goal with this dataset is to support new
generative models that map gameplay videos to game music in
symbolic format. We focus on symbolic music, as opposed to au-
dio, because we envision these future learning algorithms to be
employed as part of game development pipelines, especially within
the indie community. Thus, symbolic music (e.g., MIDI) has the
advantage of being easily editable, while audio files are harder to
manipulate. In other words, the generated melodies, harmonies, and
rhythms won’t necessarily be realized acoustically with the NES
synth. Developers can use the generator to prototype soundtracks
with different instrumentation that are inspired by NES music but
not direct variations of it.

The videos in our dataset were retrieved from YouTube and the
music was from a previous dataset called NES-MDB. We paired the
videos with the pieces automatically using an audio fingerprinting
algorithm similar to Shazam.We extracted the audio signal from the
video and used it as a query to retrieve the most similar piece from
a database of fingerprints constructed for each game in NES-MDB.

Additionally to the dataset, we trained a Controllable Music
Transformer [2] as a first baseline for generating NES music con-
ditioned on gameplay videos. We evaluated this approach against
its unconditional version by generating a set of 140 pieces and
computing objective music structure metrics. Results showed that
the conditional model can generate music structurally more similar
to human-composed pieces than pieces generated unconditionally.
Moreover, we labeled all games in our dataset according to their
genre and trained a CMT classifier to predict the genre of a given
music piece. We used this classifier as a proxy for human evaluators,
labeling the genre of a set of generated pieces. Results showed that
the CMT generator can learn correlations between gameplay videos
and game genres.



FDG 2024, May 21–24, 2024, Worcester, MA, USA Igor Cardoso, Rubens O. Moraes, and Lucas N. Ferreira

Table 3: Mapping performed by ChatGPT from genres re-
trieved from Wikipedia to genres listed in online games
stores.

Wikipedia Genres Stores Genres

Scrolling shooter Shooters
Rail shooter Shooters
2D action platformer Platform
Run and gun Shooters
Block breaker Puzzle
Puzzle-platform Puzzle
Beat ’em up Fighting
Multi-directional shooter Shooters
Turn-based strategy Strategy
Run-and-gun Shooters
Maze Puzzle
Casino Simulation
Action-adventure Adventure
Platform-adventure Adventure
Science fiction Adventure
Side-scrolling action Action
Shoot ’em up Shooters
Light gun shooter Shooters
Fixed shooter Shooters
Action RPG RPG
First-person rail shooter Shooters
Vehicular combat Action
Graphic adventure Adventure
Hack and slash Action
Action adventure Adventure
Tactical role-playing RPG
Pinball Simulation
Baseball Sports
Arcade style racing Racing
Side-scrolling Action
Rail shooter Shooters
Carnival Simulation
Modern first-person adventure Adventure
Educational Simulation
Tile-matching Puzzle
Action platformer Platform
Children’s book Adventure
Shooting gallery Shooters
Multidirectional shooter Shooters
Business simulation Simulation

While we achieved positive results with conditional CMT, the
problem of generating game music from videos isn’t solved. First,
the accuracy of the genre classifier can be improved to evaluate
the generated pieces better. Moreover, when listening to many
generated pieces, especially long ones, one can identify structural
issues such as excessive repetition or lack of musical form that
could be addressed by a new model. Thus, as future work, we plan
to build an end-to-end model to generate NES music from gameplay

clips. We also plan to improve the genre classifier by fine-tuning a
pre-trained music model [17].

ACKNOWLEDGMENTS
We would like to express our gratitude to all the YouTube creators
for their dedication and effort in producing high-quality long-play
videos of the NES games. Special thanks go to those behind the
World of Longplay, who produced most of the data we used.

REFERENCES
[1] Sara Cardinale and Oliver Withington. 2023. HarmonyMapper: Generating Emo-

tionally Diverse Chord Progressions for Games. In Proceedings of The Experimental
AI in Games Workshop (EXAG’23).

[2] Shangzhe Di, Zeren Jiang, Si Liu, Zhaokai Wang, Leyan Zhu, Zexin He, Hong-
ming Liu, and Shuicheng Yan. 2021. Video background music generation with
controllable music transformer. In Proceedings of the 29th ACM International
Conference on Multimedia. 2037–2045.

[3] Chris Donahue, Huanru Henry Mao, and Julian McAuley. 2018. The NES music
database: A multi-instrumental dataset with expressive performance attributes.
arXiv preprint arXiv:1806.04278 (2018).

[4] Hao-Wen Dong, Ke Chen, Julian McAuley, and Taylor Berg-Kirkpatrick. 2020.
MusPy: A toolkit for symbolic music generation. arXiv preprint arXiv:2008.01951
(2020).

[5] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. 2018. Musegan:
Multi-track sequential generative adversarial networks for symbolic music gen-
eration and accompaniment. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

[6] Lucas Ferreira, Levi Lelis, and Jim Whitehead. 2020. Computer-generated music
for tabletop role-playing games. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, Vol. 16. 59–65.

[7] Lucas N Ferreira, Lili Mou, Jim Whitehead, and Levi HS Lelis. 2022. Controlling
perceived emotion in symbolic music generation with monte carlo tree search.
In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, Vol. 18. 163–170.

[8] Lucas N. Ferreira and Jim Whitehead. 2019. Learning to Generate Music with
Sentiment. In Proceedings of the Conference of the International Society for Music
Information Retrieval (ISMIR’19).

[9] Chuang Gan, Deng Huang, Peihao Chen, Joshua B Tenenbaum, and Antonio
Torralba. 2020. Foley music: Learning to generate music from videos. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI 16. Springer, 758–775.

[10] Sageev Oore, Ian Simon, Sander Dieleman, and Doug Eck. 2017. Learning to create
piano performances. In NIPS 2017 Workshop on Machine Learning for Creativity
and Design.

[11] Marco Scirea, Julian Togelius, Peter Eklund, and Sebastian Risi. 2017. Affective
evolutionary music composition with MetaCompose. Genetic Programming and
Evolvable Machines 18 (2017), 433–465.

[12] Kun Su, Xiulong Liu, and Eli Shlizerman. 2020. Audeo: Audio generation for a
silent performance video. Advances in Neural Information Processing Systems 33
(2020), 3325–3337.

[13] Kun Su, Xiulong Liu, and Eli Shlizerman. 2020. Multi-instrumentalist net:
Unsupervised generation of music from body movements. arXiv preprint
arXiv:2012.03478 (2020).

[14] Avery Wang et al. 2003. An industrial strength audio search algorithm.. In Ismir,
Vol. 2003. Washington, DC, 7–13.

[15] Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. 2020. Learning inter-
pretable representation for controllable polyphonic music generation. arXiv
preprint arXiv:2008.07122 (2020).

[16] DuncanWilliams, Alexis Kirke, Joel Eaton, EduardoMiranda, Ian Daly, James Hal-
lowell, Etienne Roesch, Faustina Hwang, and Slawomir J Nasuto. 2015. Dynamic
game soundtrack generation in response to a continuously varying emotional
trajectory. In Audio engineering society conference: 56th international conference:
Audio for games. Audio Engineering Society.

[17] Mingliang Zeng, Xu Tan, Rui Wang, Zeqian Ju, Tao Qin, and Tie-Yan Liu. 2021.
Musicbert: Symbolic music understanding with large-scale pre-training. arXiv
preprint arXiv:2106.05630 (2021).

[18] Le Zhuo, Zhaokai Wang, Baisen Wang, Yue Liao, Chenxi Bao, Stanley Peng,
Songhao Han, Aixi Zhang, Fei Fang, and Si Liu. 2023. Video background music
generation: Dataset, method and evaluation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 15637–15647.


	Abstract
	1 Introduction
	2 Related Work
	2.1 The NES-MDB dataset
	2.2 Symbolic Music Generation from Videos
	2.3 Symbolic Music Generation for Video Games

	3 The NES-VMDB Database
	4 Experiments
	4.1 Music Structure Metrics
	4.2 Game Genre Classification

	5 Conclusions and Future Work
	Acknowledgments
	References

