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Abstract

In this paper we present Bardo Composer, a system to gen-
erate background music for tabletop role-playing games.
Bardo Composer uses a speech recognition system to trans-
late player speech into text, which is classified according to a
model of emotion. Bardo Composer then uses Stochastic Bi-
Objective Beam Search, a variant of Stochastic Beam Search
that we introduce in this paper, with a neural model to gen-
erate musical pieces conveying the desired emotion. We per-
formed a user study with 116 participants to evaluate whether
people are able to correctly identify the emotion conveyed
in the pieces generated by the system. In our study we used
pieces generated for Call of the Wild, a Dungeons and Drag-
ons campaign available on YouTube. Our results show that
human subjects could correctly identify the emotion of the
generated music pieces as accurately as they were able to
identify the emotion of pieces written by humans.

Introduction

In this paper we introduce Bardo Composer, or Composer
for short, a system for generating musical pieces that match
the emotion of stories told in tabletop role-playing games
(TRPGs). For example, if the players are fighting a dragon,
Composer should generate a piece matching such an epic
moment of the story. TRPG players often manually choose
songs to play as background music to enhance their expe-
rience (Bergström and Björk 2014). Our goal is to develop
an intelligent system that augments the players’ experience
with soundtracks that match the story being told in the game.
Importantly, the system should allow players to concentrate
on the role-playing part of the game, and not on the dis-
ruptive task of selecting the next music piece to be played.
The object of our research is Dungeons and Dragons (D&D),
a TRPG where players interpret characters of a story con-
ducted by a special player called the dungeon master.

Padovani, Ferreira, and Lelis (2017; 2019) introduced
Bardo, a system that automatically selects the background
music of a D&D session based on the story being told by
the players. This paper builds upon their system. Bardo uses
a speech recognition system to transcribe voice into text,
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which is then classified into an emotion. Bardo then selects
a song of the classified emotion from a library of labeled
songs. In this work we extend Bardo to include a neural
model for generating musical pieces conveying the emotions
detected in the game story, instead of selecting a song from a
labeled library—thus the name Bardo Composer. We expect
that by generating pieces we can capture the exact emotional
tone of the story, while methods that select from a set of pre-
composed pieces have a more limited “emotional palette”.

Language models (LMs) are able to generate coherent
music pieces (Ferreira and Whitehead 2019). However, it
is still challenging to generate music with a given emo-
tion. For that we introduce Stochastic Bi-Objective Beam
Search (SBBS), a variant of Stochastic Beam Search (Poole
and Mackworth 2010) to guide the generative process while
maximizing the probability given by a LM jointly with the
probability of pieces matching an emotion. The emotion in
the story is detected by a BERT model (Devlin et al. 2018)
and is given as input to SBBS, which uses a GPT-2 model
(Radford et al. 2019) to classify the emotion of the gener-
ated pieces.

We evaluated Composer on the Call of the Wild (CotW)
dataset (Padovani, Ferreira, and Lelis 2017), which is a cam-
paign of D&D available on YouTube. Since our primary goal
is to generate music pieces conveying the current emotion
of the game’s story, we used Composer to generate pieces of
parts of CotW that featured a transition in the story’s emo-
tion. Then, in a user study with 116 participants, we eval-
uated whether people correctly perceive the intended emo-
tions in pieces generated by Composer. We also measured
if the participants were able to distinguish the emotion of
human-composed pieces by using Bardo’s original system as
a baseline. Our results show that the participants were able
to identify the emotions in generated pieces as accurately
as they were able to identify emotions in human-composed
pieces. This is an important result towards the goal of a fully-
automated music composition system for TRPGs.

Related Work

Our work is mostly related to machine learning models that
generate music with a given emotion. For example, Mon-
teith, Martinez, and Ventura (2010) trained Hidden Markov
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models to generate music from a corpus labeled according
to a categorical model of emotion. These models are trained
for each emotion to generate melodies and underlying har-
monies. Ferreira and Whitehead (2019) used a genetic al-
gorithm to fine-tune a pre-trained LSTM, controlling the
LSTM to generate either positive or negative pieces. Our
work differs from Monteith, Martinez, and Ventura’s be-
cause we train a single LM that is controlled to generate mu-
sic with different emotions. It is also different from (Ferreira
and Whitehead 2019) once we control the LM at sampling
time and not at training time.

Our work is also related to rule-based systems that map
musical features to a given emotion (Williams et al. 2015b).
For example, Williams et al. (2015a) generate soundtracks
for video games using a rule-based system to transform
pre-generated melodies, matching the emotion of annotated
game scenes. Davis and Mohammad (2014) follow a sim-
ilar approach in TransPose, a system that generates piano
melodies for novels. Our work differs from these rule-based
systems because we learn mappings from musical features
to emotion directly from data.

Our work is also related to neural models that generate
text with a given characteristic. For example, CTRL (Keskar
et al. 2019) is a Transformer LM trained to generate text
conditioned on special tokens that inform the LM about the
characteristics of the text to be generated (e.g., style). Our
work differs from CTRL because we control the LM with a
search procedure and not with an extra input to the LM. Con-
ditioning the LM requires a large amount of labeled data,
which is expensive in our domain.

The Plug and Play LM (Dathathri et al. 2019) combines a
pre-trained LM with a small attribute classifier to guide text
generation. Although both Composer and the Plug and Play
LM control the generation procedure at sampling time, we
use search as a means of generation control while Plug and
Play LM uses a classifier to alter the structure of the model.

Vijayakumar et al. (2018) and Kool, Hoof, and
Welling (2019) proposed variations of Beam search to solve
the problem of generating repetitive sentences. Our work
differs from both these works because our variation of Beam
search optimizes for two independent objectives.

Background
Symbolic Music Composition Symbolic music is typi-
cally generated by sampling from a LM that computes the
likelihood of the next musical symbols (e.g., note) in a piece.
Typically, the LM is defined as a neural network and the
symbols are extracted from MIDI or piano roll represen-
tations of music (Briot, Hadjeres, and Pachet 2017). Let
x = [x0, · · · , xt−2, xt−1] be the first t symbols of a piece
and P (xt|x0, · · · , xt−2, xt−1) be the probability of the next
symbol being xt, according to a trained LM. One can sample
the next symbol of the sequence according to the probability
distribution P (Briot, Hadjeres, and Pachet 2017). We de-
note the trained language model as L and L(x) is a function
that returns the next symbol given a sequence x. To generate
a piece with L, one provides as input a sequence of symbols
x = [x0, x1, · · · , xt] to bias the generation process. This in-
put sequence is fed into L which computes L(x) = xt+1.

Algorithm 1 Bardo Composer

Require: Speech recognition system S, Text emotion clas-
sifier Es, Music emotion classifier Em, LM L, speech
signal v, previously composed symbols x, beam size b,
number of symbols k

Ensure: Music piece x
1: s, l← S(v)
2: v, a← Es(s)
3: y ← SBBS(L,Em, x, v, a, b, k, l) # see Algorithm 2
4: return x ∪ y

Next, xt+1 is concatenated with x and the process repeats
until a special end-of-piece symbol is found or a given num-
ber of symbols are generated.

Bardo Padovani, Ferreira, and Lelis (2017; 2019) pre-
sented Bardo, a system to select background music for table-
top games. Bardo classifies sentences produced by a speech
recognition system into one of the four story emotions:
Happy, Calm, Agitated, and Suspenseful. Bardo then selects
a song from a library of songs corresponding to the classified
emotion. The selected song is then played as background
music at the game table. In this paper we use Padovani et
al.’s dataset to train an emotion classifier for the story being
told at a game session. Their dataset includes 9 episodes of
CotW, which contains 5,892 sentences and 45,247 words, re-
sulting in 4 hours, 39 minutes, and 24 seconds of gameplay.
There are 2,005 Agitated, 2,493 Suspenseful, 38 Happy, and
1,356 Calm sentences in the dataset.

Valence-Arousal Model of Emotion We use a two-
dimensional emotion model that generalizes the emotion
model used in Bardo. We consider the dimensions of valence
and arousal, denoted by a pair (v, a), where v ∈ [0, 1] and
a ∈ [0, 1] (Russell 1980). Valence measures sentiment and
thus v = 0 means a negative input and v = 1 means a posi-
tive input. Arousal measures the energy of the input and thus
a = 0 means that the input has low energy whereas a = 1
means that the input has high energy. We use this model for
classifying both the emotion of the player’s speeches and the
emotion of the generated music.

Bardo Composer: System Description

A general overview of Composer is shown in Algorithm 1.
It receives as input a speech recognition system S, an emo-
tion classifier for text Es, an emotion classifier for music
Em, a LM for symbolic music generation L, a speech sig-
nal v with the last sentences spoken by the players, and a
sequence x of musical symbols composed in previous calls
to Composer. The algorithm also receives parameters b and
k, which are used in the search procedure described in Al-
gorithm 2. Composer returns a symbolic piece that tries to
match the emotion in the players’ speeches.

Composer starts by converting the speech signal v into
text s with S (line 1). In addition to text, S returns the du-
ration of the signal v in seconds, this is stored in l. Then,
Composer classifies the emotion of s in terms of valence
v and arousal a and it invokes our Stochastic Bi-Objective
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Beam Search (SBBS) to generate a sequence of symbols y
that matches the desired length l and emotion with arousal a
and valence v. SBBS receives as input the models L and Em,
the current sequence x, the desired emotion values v and a,
SBBS’s parameter values b and k, which are explained be-
low, and the desired length l of the piece to be generated.

In the first call to Composer, the sequence x is initialized
with the the symbols of the first 4 timesteps of a random
human-composed piece with the emotion v, a, as returned
by Es. Every time there is a transition from one emotion
to another, we reinitialize the sequence x using the same
process. This is used to bias the generative process and to
emphasize emotion transitions.

To be used in real-time, Composer is invoked with the
most recently captured speech signal v and returns a com-
posed piece of music. While the most recent piece is being
played at the game table, Composer receives another signal
v and composes the next excerpt. One also needs to define
the length of the signal v. In our implementation, similar to
Padovani et al. (2017), we use YouTube’s subtitle system as
the speech recognition system S. Therefore, signals v are
long enough to form a subtitle.

Classifying the Story’s Emotion

In order to have a common model of emotion between sto-
ries and music, we use a mapping from Bardo’s four emotion
model to the valence-arousal model. Namely, we have Sus-
penseful mapping to low valence and arousal (v = 0, a =
0); Agitated to low valence and high arousal (v = 0, a = 1);
Calm to high valence and low arousal (v = 1, a = 0); and
Happy to high valence and arousal (v = 1, a = 1).

For example, in the context of the game Dungeons and
Dragons, the sentence “Roll initiative” is normally said at
the beginning of battles and it can be considered (v = 0, a =
1), once a battle is a negative (dangerous) moment with high
energy. “Roll initiative” is normally classified as Agitated in
Padovani et al.’s dataset. This mapping allows us to use the
valence-arousal model with the labeled CotW dataset.

The valence-arousal mapping is based on the model used
to annotate the VGMIDI dataset. When human subjects an-
notated that dataset, they used a continuous valence/arousal
model with labels defining a fixed set of discrete basic emo-
tions (e.g. happy or sad) (Ferreira and Whitehead 2019).

Given the limited amount of TRPG stories labeled ac-
cording to emotion (there are only 5,892 sentences in the
CotW dataset), we use a transfer learning approach to clas-
sify the sentences (Radford et al. 2018). We fine-tune a high-
capacity BERT architecture with the CotW dataset (Devlin
et al. 2018). We use BERT because it outperforms several
other transformers across different NLP tasks (Devlin et al.
2018). Although in Algorithm 1 we depict the classifier for
story emotions as a single Es model, in our implementation
we treat valence and arousal independently, thus we fine-
tune a pre-trained BERT for each dimension.

Classifying the Music’s Emotion

As was the case with the TRPG stories, given the limited
amount of MIDI pieces labeled according to emotion, we
also apply a transfer learning approach to classify emotion

in music (Em). However, different than the Es model where
we fine-tune a BERT architecture, for Em we fine-tune a
GPT-2 architecture (Radford et al. 2019). We use GPT-2
for Em because it is better suited for sequence generation
than BERT. Similarly to Es, model Em also treats valence
and arousal independently. Thus, we fine-tune a pre-trained
GPT-2 for each of these dimensions.

To the best of our knowledge, in the symbolic music do-
main, there are no publicly available high-capacity LM pre-
trained with large (general) datasets. Typically, models in
this domain are trained with relatively small and specific
datasets. For example, the MAESTRO dataset (Hawthorne
et al. 2019), the Bach Chorales (Hadjeres, Pachet, and
Nielsen 2017) and the VGMIDI (Ferreira and Whitehead
2019) dataset. We pre-train a general high-capacity GPT-2
architecture as a language model (Radford et al. 2019) us-
ing a new dataset we created called ADL (Augmented De-
sign Lab) Piano MIDI dataset 1.

The ADL Piano MIDI dataset is based on the Lakh MIDI
dataset (Raffel 2016), which, to the best of our knowledge,
is the largest MIDI dataset publicly available. The Lakh
MIDI dataset contains a collection of 45,129 unique MIDI
files that have been matched to entries in the Million Song
dataset (Bertin-Mahieux et al. 2011). Among these files,
there are many versions of the same piece. We kept only
one version of each piece. Given that the datasets for emo-
tion classification in music are limited to piano only, we ex-
tracted from the Lakh MIDI dataset only the tracks with in-
struments from the “piano family”(MIDI program numbers
1-8 in the dataset). This process generated a total of 9,021
unique piano MIDI files. These files are mainly Rock and
Classical pieces, so to increase the genre diversity (e.g. Jazz,
Blues, and Latin) of the dataset, we included an additional
2,065 files scraped from public sources on the Internet2. All
files in the final collection were de-duped according to their
MD5 checksum. The final dataset has 11,086 pieces.

After pre-training the high-capacity GPT-2 model, we
fine-tune two independent models (one for valence and
one for arousal) with an extended version of the VGMIDI
dataset (Ferreira and Whitehead 2019). We extended the
VGMIDI dataset from 95 to 200 labeled pieces using the
same annotation method of the original dataset. All the 200
pieces are piano arrangements of video game soundtracks
labeled according to the valence-arousal model of emotion.

Encoding We encode a MIDI file by parsing all notes from
the NOTE ON and NOTE OFF events in the MIDI. We define
a note as a set z = (zp, zs, zd, zv), where {zp ∈ Z|0 ≤
zp < 128} is the pitch number, {zs ∈ Z|zs ≥ 0} is the note
starting time in timesteps, {zd ∈ Z|0 ≤ zd ≤ 56} is note
duration in timesteps and {zv ∈ Z|0 ≤ zv < 128} is the
note velocity. Given a MIDI NOTE ON event, we parse a note
z by retrieving the starting time zs (in seconds), the pitch
number zp and the velocity zv from that event. To calculate
the note duration zd, we find the correspondent NOTE OFF
event of the given NOTE ON and retrieve the NOTE OFF end
time ze (in seconds). We discretize zs and ze to compute the

1https://github.com/lucasnfe/adl-piano-midi
2https://bushgrafts.com/midi/ and http://midkar.com/jazz/
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Algorithm 2 Stochastic Bi-Objective Beam Search

Require: Music emotion classifier Em, LM L, previously
composed symbols x, valence and arousal values v and
a, number k of symbols to consider, beam size b, length
l in seconds of the generated piece.

Ensure: Sequence of symbols of l seconds.
1: B ← [x], j ← 0
2: while l(y[t : t+ j]) < l, ∀y ∈ B do
3: C ← {}
4: for all m ∈ B do
5: Cm ← {m ∪ s|s ∈ V }
6: Cm ← k elements y from Cm with largest pL(y)
7: C ← C ∪ Ci

8: B ← b sequences y sampled from C proportionally
to pL(y)(1− |v − Em,v(y)|)(1− |a− Em,a(y)|)

9: j ← j + 1
10: return m ∈ B such that pL(m) = maxy∈B pL(y) and

l(y[t : t+ j]) ≥ l

note duration zd = t · ze − t · zs in timesteps, where t is a
parameter defining the sampling frequency of the timesteps.

We derive a sequence x = {z1v , z1d, z1p, · · · , znv , znd , znp } of
tokens for a given MIDI file by (a) parsing all notes zi from
the file, (b) sorting them by starting time zjs and (c) concate-
nating their velocity zjv , duration zjd and pitch zjp. We add
two special tokens TS and END in the sequence x, to mark
the end of a timestep and the end of a piece, respectively.
This encoding yields a vocabulary V of size |V | = 314.

Stochastic Bi-Objective Beam Search

Next, we describe how one can use a LM and a music emo-
tion classifier to bias the process of music generation to
match a particular emotion (line 3 of Algorithm 1). For that
we introduce Stochastic Bi-Objective Beam Search (SBBS),
a search algorithm guided by the LM L and the music emo-
tion classifiers, denoted as Em,v and Em,a, for valence and
arousal. The goal of SBBS is to allow for the generation of
pieces that sound “good” (i.e., have high probability value
according to the trained LM), but that also match the current
emotion of the story being told by the players.

We call SBBS “stochastic” because it samples from a dis-
tribution instead of greedily selecting the best sequences of
symbols, as a regular beam search does. The stochasticity of
SBBS allows it to generate a large variety of musical pieces
for the same values of v and a. We also call it “bi-objective”
because it optimizes for realism and emotion.

The pseudocode of SBBS is shown in Algorithm 2.
In the pseudocode we use letters x, y and m to de-
note sequences of musical symbols. Function pL(y) =∏

yt∈y P (yt|y0, · · · , yt−1) is the probability of sequence y

according to the LM L; a high value of pL(y) means that y
is recognized as a piece of “good quality” by L. We denote
as l(y) the duration in seconds of piece y. Finally, we write
x[i : j] for j ≥ i to denote the subsequence of x starting at
index i and finishing at index j.
SBBS initializes the beam structure B with the sequence

x passed as input (line 1). SBBS also initializes variable j
for counting the number of symbols added by the search.
SBBS keeps in memory at most b sequences and, while all
sequences are shorter than the desired duration l (line 2),
it adds a symbol to each sequence (lines 3–9). SBBS then
generates all sequences by adding one symbol from vocabu-
lary V to each sequence m from B (line 5); these extended
sequences, known as the children of m, are stored in Cm.

The operations performed in lines 6 and 8 attempt to en-
sure the generation of good pieces that convey the desired
emotion. In line 6, SBBS selects the k sequences with largest
pL-value among the children of m. This is because some of
the children with low pL-value could be attractive from the
perspective of the desired emotion and, although the result-
ing piece could convey the desired emotion, the piece would
be of low quality according to the LM. The best k children of
each sequence in the beam are added to set C (line 7). Then,
in line 8, SBBS samples the sequences that will form the
beam of the next iteration. Sampling occurs proportionally
to the values of pL(y)(1−|v−Em,v(y)|)(1−|a−Em,a(y)|),
for sequences y in C. A sequence y has higher chance of be-
ing selected if L attributes a high probability value to y and
if the music emotion model classifies the values of valence
and arousal of y to be similar to the desired emotion. When
at least one of the sequences is longer than the desired du-
ration of the piece, SBBS returns the sequence with largest
pL-value that satisfies the duration constraint (line 10).

Empirical Evaluation

Our empirical evaluation is divided into two parts. First, we
evaluate the accuracy of the models used for story and music
emotion classification. We are interested in comparing the
fine-tuned BERT model for story emotion classification with
the simpler Naı̈ve Bayes approach of Padovani, Ferreira, and
Lelis (2017). We are also interested in comparing the fine-
tuned GPT-2 model for music emotion classification with
the simpler LSTM of Ferreira and Whitehead (2019). In the
second part of our experiments we evaluate with a user study
whether human subjects can recognize different emotions in
pieces generated by Composer for the CotW campaign.

Emotion Classifiers

Story Emotion The story emotion classifier we use with
Composer is a pair of BERT models, one for valence and
one for arousal. For both models, we use the pre-trained
BERTBASE of Devlin et al. (2018), which has 12 layers,
768 units per layer, and 12 attention heads. BERTBASE was
pre-trained using both the BooksCorpus (800M words) (Zhu
et al. 2015) and the English Wikipedia (2,500M words).

We independently fine-tune these two BERT models
as valence and arousal classifiers using the CotW dataset
(Padovani, Ferreira, and Lelis 2017). Fine-tuning consists
of adding a classification head on top the pre-trained model
and training all the parameters (including the pre-trained
ones) of the resulting model end-to-end. All these param-
eters were fine-tuned with an Adam optimizer (Kingma and
Ba 2014) with learning rate of 3e-5 for 10 epochs. We used
mini-batches of size 32 and dropout of 0.5.
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Alg.
Episodes

Avg.
1 2 3 4 5 6 7 8 9

NB 73 88 91 85 94 81 41 74 94 80
BERT 89 92 96 88 97 81 66 83 96 87

Table 1: Valence accuracy in % of Naı̈ve Bayes (NB) and
BERT for story emotion classification.

The CotW dataset is divided into 9 episodes, thus we eval-
uate the accuracy of each BERT classifier using a leave-one-
out strategy. For each episode e, we leave e out for testing
and train in the remaining episodes. For example, when test-
ing on episode 1, we use episodes 2-8 for training. Every
sentence is encoded using a WordPiece embedding (Wu et
al. 2016) with a 30,000 token vocabulary.

We compare the fine-tuned BERT classifiers with a Naı̈ve
Bayes (NB) approach (baseline), chosen because it is the
method underlying the original Bardo system. NB encodes
sequences using a traditional bag-of-words with tf–idf ap-
proach. Table 1 shows the accuracy of the valence classifi-
cation of both these methods per episode. The best accuracy
for a given episode is highlighted in bold. The BERT clas-
sifier outperforms NB in all the episodes, having an average
accuracy 7% higher. For valence classification, the hardest
episode for both the models is episode 7, where BERT had
the best performance improvement when compared to NB.
The story told in episode 7 of CotW is different from all
other episodes. While the other episodes are full of battles
and ability checks, episode 7 is mostly the players talking
with non-player characters. Therefore, what is learned in the
other episodes does not generalize well to episode 7. The im-
provement in accuracy of the BERT model in that episode
is likely due to the model’s pre-training. Episodes 5 and 9
were equally easy for both methods because they are simi-
lar to one another. The system trained in one of these two
episodes generalizes well to the other.

Table 2 shows the accuracy of arousal classification of
both NB and BERT. The best accuracy for a given episode is
highlighted in bold. Again BERT outperforms NB in all the
episodes, having an average accuracy 5% higher. In contrast
with the valence results, here there is no episode in which
the BERT model substantially outperforms NB.

Alg.
Episodes

Avg.
1 2 3 4 5 6 7 8 9

NB 82 88 75 79 82 76 98 86 84 83
BERT 86 90 77 86 89 88 99 90 88 88

Table 2: Arousal accuracy in % of Naı̈ve Bayes (NB) and
BERT for story emotion classification.

Music Emotion The music emotion classifier is a pair of
GPT-2 models, one for valence and one for arousal. We first
pre-trained a GPT-2 LM with our ADL Piano MIDI dataset.
We augmented each piece p of this dataset by (a) transpos-

Algorithm Valence Arousal

Baseline LSTM 69 67
Fine-tuned LSTM 74 79
Baseline GPT-2 70 76

Fine-tuned GPT-2 80 82

Table 3: Accuracy in % of both the GPT-2 and LSTM mod-
els for music emotion classification.

ing p to every key, (b) increasing and decreasing p’s tempo
by 10% and (c) increasing and decreasing the velocity of
all notes in p by 10% (Oore et al. 2017). Thus, each piece
generated 12 · 3 · 3 = 108 different examples.

The pre-trained GPT-2 LM has 4 layers (transformer
blocks), context size of 1024 tokens, 512 embedding units,
1024 hidden units, and 8 attention heads. We then fine-tuned
the GPT-2 LM independently using the VGMIDI dataset,
for valence and for arousal. Similarly to BERT, fine-tuning
a GPT-2 architecture consists of adding an extra classifica-
tion head on top of the pre-trained model and training all
parameters end-to-end. Similar to the story emotion classi-
fiers, we fine-tuned the GPT-2 classifiers for 10 epochs using
an Adam optimizer with learning rate 3e-5. Different from
the story emotion classifiers, we used mini-batches of size
16 (due to GPU memory constrains) and dropout of 0.25.
The VGMIDI dataset is defined with a train and test splits of
160 and 40 pieces, respectively. We augmented the dataset
by slicing each piece into 2, 4, 8 and 16 parts of equal length
and emotion. Thus, each part of each slicing generated one
extra example. This augmentation is intended to help the
classifier generalize for pieces with different lengths.

We compare the fine-tuned GPT-2 classifiers with LSTM
models that were also pre-trained with the ADL Piano
Midi dataset and fine-tuned with the VGMIDI dataset. We
chose LSTMs because they are the state-of-the-art model in
the VGMIDI dataset (Ferreira and Whitehead 2019). The
LSTMs have same size as the GPT-2 models (4 hidden
layers, 512 embedding units, 1024 hidden units) and were
pre-trained and fine-tuned with the same hyper-parameters.
Table 3 shows the accuracy of both models for valence
and arousal. We also report the performance of these mod-
els without pre-training (i.e., trained only on the VGMIDI
dataset). We call these the baseline versions of the models.

Results show that using transfer learning can substantially
boost the performance of both models. The fine-tuned GPT-
2 is 10% more accurate in terms of valence and 8% in terms
of arousal. The fine-tuned LSTM is 5% more accurate in
terms of valence and 12% in terms of arousal. Finally, the
fine-tuned GPT-2 outperformed the fine-tuned LSTM by 6%
and 3% in terms of valence and arousal, respectively.

User Study

In our study we measure Composer’s performance at gen-
erating music that matches the emotions of a story. We use
Composer to generate a piece for a snippet composed of 8
contiguous sentences of each of the first 5 episodes of the
CotW dataset. Each snippet has one emotion transition that
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Method
Episodes

Average
e1-p1 e1-p2 e2-p1 e2-p2 e3-p1 e3-p2 e4-p1 e4-p2 e5-p1 e5-p2
v a v a v a v a v a v a v a v a v a v a v a va

Baseline 56 65 39 56 39 62 39 79 48 60 67 53 58 70 63 75 25 36 72 58 51 32 34
Composer 62 60 44 65 82 68 53 68 24 55 46 43 25 87 37 55 81 86 51 67 51 30 34

Table 4: The percentage of participants that correctly identified the valence and arousal (v and a, respectively) intended by the
methods for the pieces parts (p1 and p2).

happens in between sentences. The sentences are 5.18 sec-
onds long on average. To test Composer’s ability to generate
music pieces with emotion changes, we asked human sub-
jects to listen to the 5 generated pieces and evaluate the tran-
sitions of emotion in each generated piece.3

The user study was performed via Amazon Mechanical
Turk and had an expected completion time of approximately
10 minutes. A reward of USD $1 was given to each par-
ticipant who completed the study. In the first section of the
study, the participants were presented an illustrated descrip-
tion of the valence-arousal model of emotion and listened to
4 examples of pieces from the VGMIDI dataset labeled with
the valence-arousal model. Each piece had a different emo-
tion: low valence and arousal, low valence and high arousal,
high valence and low arousal, high valence and arousal.

In the second section of the study, participants were asked
to listen to the 5 generated pieces (one per episode). After
listening to each piece, participants had to answer 2 ques-
tions: (a) “What emotion do you perceive in the 1st part of
the piece?” and (b) “What emotion do you perceive in the
2nd part of the piece?” To answer these two questions, par-
ticipants selected one of the four emotions: low valence and
arousal, low valence and high arousal, high valence and low
arousal, high valence and arousal. Subjects were allowed to
play the pieces as many times as they wanted before an-
swering the questions. The final section of the study was
a demographics questionnaire including ethnicity, first lan-
guage, age, gender, and experience as a musician. To answer
the experience as a musician, we used a 1-to-5 Likert scale
where 1 means “I’ve never studied music theory or practice”
and 5 means “I have an undergraduate degree in music”.

We compare Composer with a baseline method that se-
lects a random piece from the VGMIDI dataset whenever
there is a transition of emotion. The selected piece has the
same emotion of the sentence (as given by the story emo-
tion classifier). To compare these two methods, we used a
between-subject strategy where Group A of 58 participants
evaluated the 5 pieces generated by Composer and another
Group B of 58 participants evaluated the 5 pieces from the
baseline. We used this strategy to avoid possible learning
effects where subjects could learn emotion transitions from
one method and apply the same evaluation directly to the
other method. The average age of groups A and B are 34.96
and 36.98 years, respectively. In Group A, 69.5% of partic-
ipants are male and 30.5% are female. In Group B, 67.2%

3Generated pieces can be downloaded from the following link:
https://github.com/lucasnfe/bardo-composer

are male and 32.8% are female. The average musicianship
of the groups A and B are 2.77 and 2.46, respectively.

Table 4 shows the results of the user study. We consider
both parts (p1 and p2 in the table) of each episode as an in-
dependent piece. The table presents the percentage of par-
ticipants that correctly identified the pieces’ valence and
arousal (“v” and “a” in the table, respectively), as intended
by the methods. For example, 87% of the participants cor-
rectly identified the arousal value that Composer intended
the generated piece for part p1 of episode 4 (e4-p1) to have.
We refer to the percentage of participants that are able to
identify the approach’s intended emotion as the approach’s
accuracy. We also present the approaches’ average accuracy
across all pieces (“Average” in the table) in terms of valence,
arousal, and jointly for valence and arousal (“va” in the ta-
ble). The “va”-value of 34 for Composer means that 34%
of the participants correctly identified the system’s intended
values for valence and arousal across all pieces generated.

Composer outperformed the Baseline in e1-p2, e2-p1, and
e5-p1. Baseline outperformed Composer e3-p1, e3-p2 and
e4-p2. In the other four parts, one method performed better
for valence whereas the other method performance better for
arousal. Overall, the average results show that both systems
performed very similarly. Both of them had an average ac-
curacy on the combined dimensions equal to 34%. The dif-
ference between these two methods and a system that selects
pieces at random (expected accuracy of 25%) is significant
according to a Binomial test (p = 0.02). These results show
that the participants were able to identify the emotions in the
generated pieces as accurately as they were able to identify
the emotions in human-composed pieces. This is an impor-
tant result towards the development of a fully automated sys-
tem for music composition for story-based tabletop games.

Conclusions

This paper presented Bardo Composer, a system that auto-
matically composes music for tabletop role-playing games.
The system processes sequences from speech and generates
pieces one sentence after the other. The emotion of the sen-
tence is classified using a fine-tuned BERT. This emotion
is given as input to a Stochastic Bi-Objective Beam Search
algorithm that tries to generate a piece that matches the emo-
tion. We evaluated Composer with a user study and results
showed that human subjects correctly identified the emotion
of the generated music pieces as accurately as they were able
to identify the emotion of pieces composed by humans.
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