
LEARNING TO GENERATE MUSIC WITH SENTIMENT

Lucas N. Ferreira
University of California, Santa Cruz
Department of Computational Media

Jim Whitehead
University of California, Santa Cruz
Department of Computational Media

ABSTRACT

Deep Learning models have shown very promising re-
sults in automatically composing polyphonic music pieces.
However, it is very hard to control such models in order to
guide the compositions towards a desired goal. We are in-
terested in controlling a model to automatically generate
music with a given sentiment. This paper presents a gen-
erative Deep Learning model that can be directed to com-
pose music with a given sentiment. Besides music gener-
ation, the same model can be used for sentiment analysis
of symbolic music. We evaluate the accuracy of the model
in classifying sentiment of symbolic music using a new
dataset of video game soundtracks. Results show that our
model is able to obtain good prediction accuracy. A user
study shows that human subjects agreed that the generated
music has the intended sentiment, however negative pieces
can be ambiguous.

1. INTRODUCTION

Music Generation is an important application domain of
Deep Learning in which models learn musical features
from a dataset in order to generate new, interesting music.
Such models have been capable of generating high quality
pieces of different styles with strong short-term dependen-
cies 1 [2]. A major challenge of this domain consists of
disentangling these models to generate compositions with
given characteristics. For example, one can’t easily con-
trol a model trained on classical piano pieces to compose
a tense piece for a horror scene of a movie. Being able
to control the output of the models is specially important
for the field of Affective Music Composition, whose major
goal is to automatically generate music that is perceived
to have a specific emotion or to evoke emotions in listen-
ers [19]. Applications involve generating soundtracks for
movies and video-games [18], sonification of biophysical
data [3] and generating responsive music for the purposes
of music therapy and palliative care [9].

Recently, Radford et al. [13] showed that a genera-
tive Long short-term memory (LSTM) neural network can

1 Supporting strong long-term dependencies (music form) is still an
open problem.

c© Lucas N. Ferreira, Jim Whitehead. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Lucas N. Ferreira, Jim Whitehead. “Learning to Generate
Music With Sentiment”, 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

learn an excellent representation of sentiment (positive-
negative) on text, despite being trained only to predict the
next character in the Amazon reviews dataset [6]. When
combined to a Logistic Regression, this LSTM achieves
state-of-the-art sentiment analysis accuracy on the Stan-
ford Sentiment Treebank dataset and can match the per-
formance of previous supervised systems using 30-100x
fewer labeled examples. This LSTM stores almost all
of the sentiment signal in a distinct “sentiment neuron”,
which can be used to control the LSTM to generate sen-
tences with a given sentiment. In this paper, we explore
this approach with the goal of composing symbolic music
with a given sentiment. We also explore this approach as a
sentiment classifier for symbolic music.

In order to evaluate this approach, we need a dataset of
music in symbolic format that is annotated by sentiment.
Even though emotion detection is an important topic in
music information retrieval [7], it is typically studied on
music in audio format. To the best of our knowledge, there
are no datasets of symbolic music annotated according to
sentiment. Therefore, we created a new dataset composed
of 95 MIDI labelled piano pieces (966 phrases of 4 bars)
from video game soundtracks. Each piece is annotated by
30 human subjects according to a valence-arousal (dimen-
sional) model of emotion [15]. The sentiment of each piece
is then extracted by summarizing the 30 annotations and
mapping the valence axis to sentiment. The same dataset
also contains another 728 non-labelled pieces, which were
used for training the generative LSTM.

We combine this generative LSTM with a Logistic
Regression and analyse its sentiment prediction accuracy
against a traditional classification LSTM trained in a fully-
supervised way. Results showed that our model (genera-
tive LSTM with Logistic Regression) outperformed the su-
pervised LSTM by approximately 30%. We also analysed
the generative capabilities of our model with a user study.
Human subjects used an online annotation tool to label 3
pieces controlled to be negative and 3 pieces controlled to
be positive. Results showed human annotators agree the
generated positive pieces have the intended sentiment. The
generated negative pieces appear to be ambiguous, having
both negative and positive parts.

We believe this paper is the first work to explore sen-
timent analysis in symbolic music and it presents the first
disentangled Deep Learning model for music generation
with sentiment. Another contribution of this paper is a la-
belled dataset of symbolic music annotated according to
sentiment. These contributions open several direction for

future research, specially music generation with emotions
as both a multi-class problem and as a regression prob-
lem. Moreover, these methods could be applied to create
soundtrack generation systems for films, video games, in-
teractive narratives, audio books, etc.

2. RELATED WORK

This paper is related to previous work on Affective Al-
gorithmic Music Composition, more specifically to works
that process music in symbolic form in order to generate
music with a given emotion. A common approach for this
problem consists of designing a rule-based system to map
musical features to a given emotion in a categorical or di-
mensional space [19]. For example, Williams et al. [18]
propose a system to generate soundtracks for video games
where each game’s scene graph (defining all the possi-
ble branching of scenes in the game) is annotated accord-
ing to a valence-arousal model. A second-order Markov
model is used to learn melodies from a dataset and are
then transformed by a rule-based system to fit the anno-
tated emotions in the graph. Davis and Mohammad [4]
follow a similar approach in TransPose, a system that com-
poses piano melodies for novels. TransPose uses a lexicon-
based approach to automatically detect emotions (categor-
ical model) in novels and a rule-based technique to create
piano melodies with these emotions.

There are a few other approaches in the literature to
compose music with a given emotion. Scirea et al. [16]
recently presented a framework called MetaCompose de-
signed to create background music for games in real-time.
MetaCompose generates music by (i) randomly creating
a chord sequence from a pre-defined chord progression
graph, (ii) evolving a melody for this chord sequence us-
ing a genetic algorithm and (iii) producing an accompani-
ment for the melody/chord sequence combination. Mon-
teith et al. [10] approaches Affective Algorithmic Music
Composition from a Machine Learning perspective to learn
melodies and rhythms from a corpus of music labeled ac-
cording to a categorical model of emotion. Individual Hid-
den Markov models and n-grams are trained for each cate-
gory to generate pitches and underlying harmonies, respec-
tively. Rhythms are sampled randomly from examples of a
given category.

Deep Learning models have recently achieved high-
quality results in music composition with short-term de-
pendencies [2]. These models normally are trained on a
corpus of MIDI files to predict the next note to be played
based on a given note. In general, these models can’t be
manipulated to generate music with a given emotion. For
example, in the system DeepBach, Hadjeres et al. [5] use a
dependency network and a Gibbs-like sampling procedure
to generate high-quality four-part chorales in the style of
Bach. Roberts et at. [14] train recurrent variational autoen-
coder (VAEs) to reproduce short musical sequences and
with a novel hierarchical decoder they are able to model
long sequences with musical structure for both individual
instruments and a three-piece band (lead, bass, and drums).

The majority of the deep learning models are trained

to generate musical scores and not performances. Oore et
al. [11] tackles this problem by training an LSTM with a
new representation that supports tempo and velocity events
from MIDI files. This model was trained on the Yamaha
e-Piano Competition [1], which contains MIDI captures
of ~1400 performances by skilled pianists. With this
new representation and dataset, Oore et al. [11] generated
more human-like performances when compared to previ-
ous models.

3. MODEL

We propose a Deep Learning method for affective algorith-
mic composition that can be controlled to generate music
with a given sentiment. This method is based on the work
of Radford et al. [13] which generates product reviews (in
textual form) with sentiment. Radford et al. [13] used a
single-layer multiplicative long short-term memory (mL-
STM) network [8] with 4096 units to process text as a se-
quence of UTF-8 encoded bytes (character-based language
modeling). For each byte, the model updates its hidden
state of the mLSTM and predicts a probability distribution
over the next possible byte.

This mLSTM was trained on the Amazon product re-
view dataset, which contains over 82 million product re-
views from May 1996 to July 2014 amounting to over 38
billion training bytes [6]. Radford et al. [13] used the
trained mLSTM to encode sentences from four different
Sentiment Analysis datasets. The encoding is performed
by initializing the the states to zeros and processing the se-
quence character-by-character. The final hidden states of
the mLSTM are used as a feature representation. With the
encoded datasets, Radford et al. [13] trained a simple lo-
gistic regression classifier with L1 regularization and out-
performed the state-of-the-art methods at the time using
30-100x fewer labeled examples.

By inspecting the relative contributions of features on
various datasets, Radford et al. [13] discovered a single
unit within the mLSTM that directly corresponded to sen-
timent. Because the mLSTM was trained as a generative
model, one can simply set the value of the sentiment unit
to be positive or negative and the model generates corre-
sponding positive or negative reviews.

3.1 Data Representation

We use the same combination of mLSTM and logistic re-
gression to compose music with sentiment. To do this, we
treat the music composition problem as a language model-
ing problem. Instead of characters, we represent a music
piece as a sequence of words and punctuation marks from a
vocabulary that represents events retrieved from the MIDI
file. Sentiment is perceived in music due to several features
such as melody, harmony, tempo, timbre, etc [7]. Our data
representation attempts to encode a large part of these fea-
tures 2 using a small set of words:

• “n_[pitch]”: play note with given pitch number: any
integer from 0 to 127.

2 Constrained by the features one can extract from MIDI data.

t_120 v_76 d_whole_0 n_50 n_54 n_57
v_92 d_eighth n_86 . . v_84
d_quarter_1 n_81 . .

Figure 1: A short example piece encoded using our pro-
posed representation. The encoding represents the first two
time steps of the shown measure.

• “d_[duration]_[dots]”: change the duration of the
following notes to a given duration type with a given
amount of dots. Types are breve, whole, half, quar-
ter, eighth, 16th and 32nd. Dots can be any integer
from 0 to 3.

• “v_[velocity]”: change the velocity of the following
notes to a given velocity (loudness) number. Veloc-
ity is discretized in bins of size 4, so it can be any
integer in the set V = 4, 8, 12, . . . , 128.

• “t_[tempo]”: change the tempo of the piece to a
given tempo in bpm. Tempo is also discretized in
bins of size 4, so it can be any integer in the set
T = 24, 28, 32, . . . , 160.

• “.”: end of time step. Each time step is one sixteenth
note long.

• “\n”: end of piece.

For example, Figure 1 shows the encoding of the first
two time steps of the first measure of the Legend of Zelda
- Ocarina of Time’s Prelude of Light. The first time step
sets the tempo to 120bpm, the velocity of the following
notes to 76 and plays the D Major Triad for the duration
of a whole note. The second time step sets the velocity
to 84 and plays a dotted quarter A5 note. The total size
of this vocabulary is 225 and it represents both the com-
position and performance elements of a piece (timing and
dynamics).

4. SENTIMENT DATASET

In order to apply the Radford et al. [13] method to com-
pose music with sentiment, we also need a dataset of MIDI
files to train the LSTM and another one to train the lo-
gistic regression. There are many good datasets of music
in MIDI format in the literature. However, to the best of
our knowledge, none are labelled according to sentiment.
Thus, we created a new dataset called VGMIDI which is

composed of 823 pieces extracted from video game sound-
tracks in MIDI format. We choose video game soundtracks
because they are normally composed to keep the player
in a certain affective state and thus they are less subjec-
tive pieces. All the pieces are piano arrangements of the
soundtracks and they vary in length from 26 seconds to
3 minutes. Among these pieces, 95 are annotated accord-
ing to a 2-dimensional model that represents emotion using
a valence-arousal pair. Valence indicates positive versus
negative emotion, and arousal indicates emotional inten-
sity [17].

We use this valence-arousal model because it al-
lows continuous annotation of music and because of its
flexibility—one can directly map a valence-arousal (v-a)
pair to a multiclass (happy, sad, surprise, etc) or a binary
(positive/negative) model. Thus, the same set of labelled
data permits the investigation of affective algorithmic mu-
sic composition as both a classification (multiclass and/or
binary) and as a regression problem. The valence-arousal
model is also one of the most common dimensional models
used to label emotion in music [17].

Annotating a piece according to the v-a model consists
of continuously listening to the piece and deciding what
valence-arousal pair best represents the emotion of that
piece in each moment, producing a time-series of v-a pairs.
This task is subjective, hence there is no single “correct”
time-series for a given piece. Thus, we decided to label
the pieces by asking several human subjects to listen to the
pieces and then considering the average time-series as the
ground truth. This process was conducted online via Ama-
zon Mechanical Turk, where each piece was annotated by
30 subjects using a web-based tool we designed specifi-
cally for this task. Each subject annotated 2 pieces out of
95, and got rewarded USD $0.50 for performing this task.

4.1 Annotation Tool and Data Collection

The tool we designed to annotate the video game sound-
tracks in MIDI format is composed of five steps, each one
being a single web-page. These steps are based on the
methodology proposed by Soleymani et al. [17] for anno-
tating music pieces in audio waveform. First, participants
are introduced to the annotation task with a short descrip-
tion explaining the goal of the task and how long it should
take in average. Second, they are presented to the defi-
nitions of valence and arousal. In the same page, they
are asked to play two short pieces and indicate whether
arousal and valence are increasing or decreasing. More-
over, we ask the annotators to write two to three sentences
describing the short pieces they listened to. This page is
intended to measure their understanding of the valence-
arousal model and willingness to perform the task. Third,
a video tutorial was made available to the annotators ex-
plaining how to use the annotation tool. Fourth, annotators
are exposed to the main annotation page.

This main page has two phases: calibration and annota-
tion. In the calibration phase, annotators listen to the first
15 seconds of the piece in order to get used to it and to de-
fine the starting point of the annotation circle. In the anno-

Figure 2: Screenshot of the annotation tool.

tation phase they listen to the piece from beginning to end
and label it using the annotation circle, which starts at the
point defined during the calibration phase. Figure 2 shows
the annotation interface for valence and arousal, where an-
notators click and hold the circle (with the play icon) inside
the v-a model (outer circle) indicating the current emotion
of the piece. In order to maximize annotators’ engagement
in the task, the piece is only played while they maintain a
click on the play circle. In addition, basic instructions on
how to use the tool are showed to the participants along
with the definitions of valence and arousal. A progression
bar is also showed to the annotators so they know how far
they are from completing each phase. This last step (cali-
bration and annotation) is repeated for a second piece. All
of the pieces the annotators listened to are MIDI files syn-
thesized with the “Yamaha C5 Grand" soundfont. Finally,
after the main annotation step, participants provide demo-
graphic information including gender, age, location (coun-
try), musicianship experience and whether they previously
knew the pieces they annotated.

4.2 Data Analysis

The annotation task was performed by 1425 annotators,
where 55% are female and 42% are male. The other 3%
classified themselves as transgender female, transgender
male, genderqueer or choose not to disclose their gender.
All annotators are from the United States and have an av-
erage age of approximately 31 years. Musicianship expe-
rience was assessed using a 5-point Likert scale where 1
means “I’ve never studied music theory or practice” and
5 means “I have an undergraduate degree in music”. The
average musicianship experience is 2.28. They spent on
average 12 minutes and 6 seconds to annotate the 2 pieces.

The data collection process provides a time series of
valence-arousal values for each piece, however to create a
music sentiment dataset we only need the valence dimen-
sion, which encodes negative and positive sentiment. Thus,
we consider that each piece has 30 time-series of valence
values. The annotation of each piece was preprocessed,
summarized into one time-series and split into “phrases” of
same sentiment. The preprocessing is intended to remove
noise caused by subjects performing the task randomly to
get the reward as fast as possible. The data was prepro-
cessed by smoothing each annotation with moving average

Figure 3: Data analysis process used to define the final
label of the phrases of a piece.

and clustering all 30 time-series into 3 clusters (positive,
negative and noise) according to the dynamic time-warping
distance metric.

We consider the cluster with the highest variance to be
noise cluster and so we discard it. The cluster with more
time series among the two remaining ones is then selected
and summarized by the mean of its time series. We split
this mean into several segments with the same sentiment.
This is performed by splitting the mean at all the points
where the valence changes from positive to negative or
vice-versa. Thus, all chunks with negative valence are con-
sidered phrases with negative sentiment and the ones with
positive valence are positive phrases. Figure 3 shows an
example of this three-steps process performed on a piece.
All the phrases that had no notes (i.e. silence phrases) were
removed. This process created a total of 966 phrases: 599
positive and 367 negative.

5. SENTIMENT ANALYSIS EVALUATION

To evaluate the sentiment classification accuracy of our
method (generative mLSTM + logistic regression), we
compare it to a baseline method which is a traditional
classification mLSTM trained in a supervised way. Our
method uses unlabelled MIDI pieces to train a generative
mLSTM to predict the next word in a sequence. An ad-
ditional logistic regression uses the hidden states of the
generative mLSTM to encode the labelled MIDI phrases
and then predict sentiment. The baseline method uses only
labelled MIDI phrases to train a classification mLSTM to
predict the sentiment for the phrase.

The unlabelled pieces used to train the generative mL-
STM were transformed in order to create additional train-
ing examples, following the methodology of Oore et al.
[11]. The transformations consist of time-stretching (mak-
ing each piece up to 5% faster or slower) and transposition
(raising or lowering the pitch of each piece by up to a ma-
jor third). We then encoded all these pieces and transfor-
mations according to our word-based representation (see
Section 3.1). Finally, the encoded pieces were shuffled and

90% of them were used for training and 10% for testing.
The training set was divided into 3 shards of similar size
(approximately 18500 pieces each – 325MB) and the test-
ing set was combined into 1 shard (approximately 5800
pieces – 95MB).

We trained the generative mLSTM with 6 different sizes
(number of neurons in the mLSTM layer): 128, 256, 512,
1024, 2048 and 4096. For each size, the generative mL-
STM was trained for 4 epochs using the 3 training shards.
Weights were updated with the Adam optimizer after pro-
cessing sequences of 256 words on mini-batches of size
32. The mLSTM hidden and cell states were initialized
to zero at the beginning of each shard. They were also
persisted across updates to simulate full-backpropagation
and allow for the forward propagation of information out-
side of a given sequence [13]. Each sequence is processed
by an embedding layer (which is trained together with the
mLSTM layer) with 64 neurons before passing through the
mLSTM layer. The learning rate was set to 5 ∗ 10−6 at the
beginning and decayed linearly (after each epoch) to zero
over the course of training.

We evaluated each variation of the generative mLSTM
with a forward pass on test shard using mini-batches of size
32. Table 1 shows the average 3 cross entropy loss for each
variation of the generative mLSTM.

mLSTM Neurons Average Cross Entropy Loss
128 1.80
256 1.61
512 1.41

1024 1.25
2048 1.15
4096 1.11

Table 1: Average cross entropy loss of the generative mL-
STM with different amount of neurons.

The average cross entropy loss decreases as the size of
the mLSTM increases, reaching the best result (loss 1.11)
when size is equal to 4096. Thus, we used the variation
with 4096 neurons to proceed with the sentiment classifi-
cation experiments.

Following the methodology of Radford et al. [13], we
re-encoded each of the 966 labelled phrases using the final
cell states (a 4096 dimension vector) of the trained genera-
tive mLSTM-4096. The states are calculated by initializing
them to zero and processing the phrase word-by-word. We
plug a logistic regression into the mLSTM-4096 to turn it
into a sentiment classifier. This logistic regression model
was trained with regularization “L1” to shrink the least im-
portant of the 4096 feature weights to zero. This ends up
highlighting the generative mLSTM neurons that contain
most of the sentiment signal.

We compared this generative mLSTM + logistic regres-
sion approach against our baseline, the supervised mL-
STM. This is an mLSTM with exactly the same architec-
ture and size of the generative version, but trained in a

3 Each mini-batch reports one loss.

fully supervised way. To train this supervised mLSTM,
we used the word-based representation of the phrases, but
we padded each phrase with silence (the symbol “.”) in
order to equalize their length. Training parameters (learn-
ing rate and decay, epochs, batch size, etc) were the same
ones of the the generative mLSTM. It is important to notice
that in this case the mini-batches are formed of 32 labelled
phrases and not words. We evaluate both methods using a
10-fold cross validation approach, where the test folds have
no phrases that appear in the training folds. Table 2 shows
the sentiment classification accuracy of both approaches.

Method Test Accuracy
Gen. mLSTM-4096 + Log. Reg. 89.83 ±3.14
Sup. mLSTM-4096 60.35 ±3.52

Table 2: Average (10-fold cross validation) sentiment clas-
sification accuracy of both generative (with logistic regres-
sion) and supervised mLSTMs.

The generative mLSTM with logistic regression
achieved an accuracy of 89.83%, outperforming the super-
vised mLSTM by 29.48%. The supervised mLSTM accu-
racy of 60.35% suggests that the amount of labelled data
(966 phrases) was not enough to learn a good mapping be-
tween phrases and sentiment. The accuracy of our method
shows that the generative mLSTM is capable of learning,
in an unsupervised way, a good representation of sentiment
in symbolic music.

This is an important result, for two reasons. First, since
the higher accuracy of generative mLSTM is derived from
using unlabeled data, it will be easier to improve this over
time using additional (less expensive) unlabeled data, in-
stead of the supervised mLSTM approach which requires
additional (expensive) labeled data. Second, because the
generative mLSTM was trained to predict the next word
in a sequence, it can be used as a music generator. Since
it is combined with a sentiment predictor, it opens up the
possibility of generating music consistent with a desired
sentiment. We explore this idea in the following section.

6. GENERATIVE EVALUATION

To control the sentiment of the music generated by our mL-
STM, we find the subset of neurons that contain the senti-
ment signal by exploring the weights of the trained logistic
regression model. Since each of the 10 generative models
derived from the 10 fold splits in Table 2 are themselves
a full model, we use the model with the highest accuracy.
As shown in Figure 4, the logistic regression trained with
regularization “L1” uses 161 neurons out of 4096. Unlike
the results of Radford et al. [13], we don’t have one single
neuron that stores most of the sentiment signal. Instead, we
have many neurons contributing in a more balanced way.
Therefore, we can’t simply change the values of one neu-
ron to control the sentiment of the output music.

We used a Genetic Algorithm (GA) to optimize the
weights of the 161 L1 neurons in order to lead our mL-

Figure 4: Weights of 161 L1 neurons. Note multiple
prominent positive and negative neurons.

STM to generate only positive or negative pieces. Each
individual in the population of this GA has 161 real-valued
genes representing a small noise to be added to the weights
of the 161 L1 neurons. The fitness of an individual is
computed by (i) adding the genes of the individual to the
weights (vector addition) of the 161 L1 neurons of the gen-
erative mLSTM, (ii) generating P pieces with this mL-
STM, (iii) using the logistic regression model to predict
these P generated pieces and (iv) calculating the mean
squared error of the P predictions given a desired senti-
ment s ∈ S = {0, 1}.

The GA starts with a random population of size 100
where each gene of each individual is an uniformly sam-
pled random number −2 ≤ r ≤ 2. For each generation,
the GA (i) evaluates the current population, (ii) selects 100
parents via a roulette wheel with elitism, (iii) recombines
the parents (crossover) taking the average of their genes
and (iv) mutates each new recombined individual (new
offspring) by randomly setting each gene to an uniformly
sampled random number −2 ≤ r ≤ 2.

We performed two independent executions of this GA,
one to optimize the mLSTM for generating positive pieces
and another one for negative pieces. Each execution op-
timized the individuals during 100 epochs with crossover
rate of 95% and mutation rate of 10%. To calculate the
fitness of each individual, we generated P=30 pieces with
256 words each, starting with the symbol “.” (end of time
step). The optimization for positive and negative genera-
tion resulted in best individuals with fitness 0.16 and 0.33,
respectively. This means that if we add the genes of the
best individual of the final population to the weights of the
generative mLSTM, we generate positive pieces with 84%
accuracy and negative pieces with 67% accuracy.

After these two optimization processes, the genes of
the best final individual of the positive optimization were
added to the weights of the 161 L1 neurons of the trained
generative mLSTM. We then generated 30 pieces with
1000 words starting with the symbol “.” (end of time step)
and randomly selected 3 of them. The same process was
repeated using the genes of the best final individual of the

negative execution. We asked annotators to label this 6
generated pieces via Amazon MTurk, using the the same
methodology described in Section 4.1. Figure 5 shows
the average valence per measure of each of the generated
pieces.

Figure 5: Average valence of the 6 generated pieces, as
determined by human annotators. with least variance.

We observe that the human annotators agreed that the
three positive generated pieces are indeed positive. The
generated negative pieces are more ambiguous, having
both negative and positive measures. However, as a whole
the negative pieces have lower valence than the positive
ones. This suggests that the best negative individual (with
fitness 0.33) encountered by the GA wasn’t good enough to
control the mLSTM to generate complete negative pieces.
Moreover, the challenge to optimize the L1 neurons sug-
gests that there are more positive pieces than negative ones
in the 3 shards used to train the generative mLSTM.

7. CONCLUSION AND FUTURE WORK

This paper presented a generative mLSTM that can be con-
trolled to generate symbolic music with a given sentiment.
The mLSTM is controlled by optimizing the weights of
specific neurons that are responsible for the sentiment sig-
nal. Such neurons are found plugging a Logistic Regres-
sion to the mLSTM and training the Logistic Regression
to classify sentiment of symbolic music encoded with the
mLSTM hidden states. We evaluated this model both as a
generator and as a sentiment classifier. Results showed that
our model obtained good classification accuracy, outper-
forming a equivalent LSTM trained in a fully supervised
way. Moreover, a user study showed that humans agree
that our model can generate positive and negative music,
with the caveat that the negative pieces are more ambigu-
ous.

In the future, we plan to improve our model to generate
less ambiguous negative pieces. Another future work con-
sists of expanding the model to generate music with a given
emotion (e.g. happy, sad, suspenseful, etc.) as well as with
a given valence-arousal pair (real numbers). We also plan
to use this model to compose soundtracks in real-time for
oral storytelling experiences [12].

8. ACKNOWLEDGMENTS

We would like to thank Dr. Levi Lelis for the great feed-
back and Dr. Leonardo N. Ferreira for the support on the
time series analysis. This research was supported by CNPq
(200367/2015-3).

9. REFERENCES

[1] International e-piano competition. http://www.
piano-e-competition.com. Accessed: 2019-
04-12.

[2] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pa-
chet. Deep learning techniques for music generation-a
survey. arXiv preprint arXiv:1709.01620, 2017.

[3] Sixian Chen, John Bowers, and Abigail Durrant. ’am-
bient walk’: A mobile application for mindful walking
with sonification of biophysical data. In Proceedings
of the 2015 British HCI Conference, British HCI ’15,
pages 315–315, New York, NY, USA, 2015. ACM.

[4] Hannah Davis and Saif M Mohammad. Generating
music from literature. Proceedings of the 3rd Workshop
on Computational Linguistics for Literature (CLfL),
pages 1–10, 2014.

[5] Gaëtan Hadjeres, François Pachet, and Frank Nielsen.
Deepbach: a steerable model for bach chorales gen-
eration. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 1362–
1371. JMLR. org, 2017.

[6] Ruining He and Julian McAuley. Ups and downs:
Modeling the visual evolution of fashion trends with
one-class collaborative filtering. In Proceedings of the
25th International Conference on World Wide Web,
WWW ’16, pages 507–517, Republic and Canton of
Geneva, Switzerland, 2016. International World Wide
Web Conferences Steering Committee.

[7] Youngmoo E Kim, Erik M Schmidt, Raymond
Migneco, Brandon G Morton, Patrick Richardson, Jef-
frey Scott, Jacquelin A Speck, and Douglas Turnbull.
Music emotion recognition: A state of the art review.
In Proc. ISMIR, volume 86, pages 937–952. Citeseer,
2010.

[8] Ben Krause, Iain Murray, Steve Renals, and Liang Lu.
Multiplicative LSTM for sequence modelling. ICLR
Workshop track, 2017.

[9] Eduardo R Miranda, Wendy L Magee, John J Wil-
son, Joel Eaton, and Ramaswamy Palaniappan. Brain-
computer music interfacing (bcmi): from basic re-
search to the real world of special needs. Music &
Medicine, 3(3):134–140, 2011.

[10] Kristine Monteith, Tony R Martinez, and Dan Ven-
tura. Automatic generation of music for inducing emo-
tive response. In International Conference on Compu-
tational Creativity, pages 140–149, 2010.

[11] Sageev Oore, Ian Simon, Sander Dieleman, and Doug
Eck. Learning to create piano performances. In NIPS
2017 Workshop on Machine Learning for Creativity
and Design, 2017.

[12] Rafael R Padovani, Lucas N Ferreira, and Levi HS
Lelis. Bardo: Emotion-based music recommendation
for tabletop role-playing games. In Thirteenth Artifi-
cial Intelligence and Interactive Digital Entertainment
Conference, 2017.

[13] Alec Radford, Rafal Jozefowicz, and Ilya Sutskever.
Learning to generate reviews and discovering senti-
ment. arXiv preprint arXiv:1704.01444, 2017.

[14] Adam Roberts, Jesse Engel, and Douglas Eck, edi-
tors. Hierarchical Variational Autoencoders for Music,
2017.

[15] James A Russell. A circumplex model of affect. Jour-
nal of personality and social psychology, 39(6):1161,
1980.

[16] Marco Scirea, Julian Togelius, Peter Eklund, and Se-
bastian Risi. Affective evolutionary music composition
with metacompose. Genetic Programming and Evolv-
able Machines, 18(4):433–465, 2017.

[17] Mohammad Soleymani, Micheal N. Caro, Erik M.
Schmidt, Cheng-Ya Sha, and Yi-Hsuan Yang. 1000
songs for emotional analysis of music. In Proceedings
of the 2Nd ACM International Workshop on Crowd-
sourcing for Multimedia, CrowdMM ’13, pages 1–6,
New York, NY, USA, 2013. ACM.

[18] Duncan Williams, Alexis Kirke, Joel Eaton, Eduardo
Miranda, Ian Daly, James Hallowell, Etienne Roesch,
Faustina Hwang, and Slawomir J Nasuto. Dynamic
game soundtrack generation in response to a contin-
uously varying emotional trajectory. In Audio Engi-
neering Society Conference: 56th International Con-
ference: Audio for Games. Audio Engineering Society,
2015.

[19] Duncan Williams, Alexis Kirke, Eduardo R Miranda,
Etienne Roesch, Ian Daly, and Slawomir Nasuto. In-
vestigating affect in algorithmic composition systems.
Psychology of Music, 43(6):831–854, 2015.

