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Tanager: A Generator of Feasible and Engaging
Levels for Angry Birds
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Abstract—Generating feasible levels for Physics-based
puzzle games is a complex and time-consuming task. This
is because the mechanics of these games are based on
realistic physics, so simulations are required to evaluate the
playability of the generated levels. Recently, a few generators
have been able to produce considerably complex levels
in the context of the Angry Birds game, a very famous
title of this genre. However, none of these generators are
able to guarantee the playability of their produced levels.
This paper presents Tanager, a level generator based on
a genetic algorithm that is capable of producing feasible
levels for the Angry Birds game. Evaluating playability in
this game requires checking both the stability of the stacked
blocks and the possibility of killing all the pigs with the
given amount of birds. These two components are handled
by the algorithm through a simulation. The first one is
calculated by measuring the overall velocity of the blocks
and the second is defined by an intelligent agent which
plays the levels. Three sets of experiments are conducted
to evaluate Tanager. The first one measures the performance
of the genetic algorithm underneath Tanager. The second one
explores the expressivity of the generated levels considering
their structural characteristics. The third one measures design
quality of levels via an on-line user study. Results show that
Tanager is capable of generating a considerable variety of
feasible levels that are as engaging and enjoyable as those
manually designed. However, the generated levels are less
challenging than the hand-authored ones.

Index Terms—Procedural content generation, genetic algo-
rithm, optimization, intelligent agent, immersion, physics-
based puzzle games.

I. INTRODUCTION

PROCEDURAL level generation (PLG) is the process
of designing a game level automatically or semi-

automatically via algorithms [1]. It has been studied
in the context of several different video game genres
such as platformers [2], real-time strategy (RTS) [3], first
person shooters (FPS) [4], racing [5], roguelike [6] and
stealth [7]. The main goal of a level generator is usually
to create an expressive amount (which covers a relevant
part of the space of levels) of feasible and interesting
levels [1]. In most of these genres, evaluating feasibility
is relatively simple and can be solved with path-finding
algorithms [8]. For example, it is possible to run A* in
Super Mario Bros to discover if the player can traverse
from the initial to the final position of a level [9].
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Generating feasible levels is a more complex task
in the under explored genre of physics-based puzzle
games. In this genre, different rigid and soft bodies are
used to create puzzles that have to be solved considering
forces like gravity and other physics constraints. Thus,
generators have to decide where to place such bodies in
a given space in order to create interesting feasible puz-
zles. Moreover, bodies can be either static or dynamic.
Static objects do not move and are not affected by forces
or collisions. Dynamic objects can move and are affected
by the physics of the game. A level is considered feasible
if the dynamic bodies are initially stable and if there is a
set of valid moves that let the player solve it. Levels must
be initially stable to guarantee that the objects will not
move before any player action. The difficulty to evaluate
the feasibility of a level is directly related to the type
(static or dynamic) and amount of game objects forming
the geometry and the challenges of the level.

Few papers [10], [11], [12] have explored how to gen-
erate levels for physics-based puzzle games, specially for
Angry Birds [13]. Although some generators are capable
of producing levels with complex structures, they do not
guarantee the playability of the levels. Also none of these
papers evaluated the design quality of the generated
levels. Thus, the main goal of this paper is to generate
feasible and interesting levels for the Angry Birds game,
evaluating them with players in order to measure their
design quality. The proposed generator is called Tanager
and it is based on a genetic algorithm (GA).

Tanager is built upon and extends the work described
in [10], which introduced a GA focused on creating
stable stacks of blocks for the Angry Birds game. Tanager
improves the level representation in order to evolve
more complex structures as well as the number of birds
in the level. The initialization method previously de-
signed is also extended to improve the stability of the
structures during the evolutionary process. A new fitness
function is introduced to evaluates the playability of the
generated levels. Thus, the main contributions of this
work are the following:

1) An advanced level representation that supports the
evolution of more complex blocks structures as well
as the amount of available birds.

2) An initialization method that generates a population
of levels with high likelihood of being stable.

3) A simulation-based fitness function, which applies
gameplay metrics from an intelligent agent, to pe-
nalize infeasible levels.
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4) An user study to analyze the design quality of the
generated levels.

In this user study, we consider that hand-authored lev-
els from the original game have good design quality, so
we discuss the similarity between generated levels and
hand-authored ones according to difficulty, engagement
and enjoyment. Tanager was also evaluated according
to performance and expressivity. Results show that it is
capable of generating stable and playable levels that are
as engaging and enjoyable as those manually designed.

The remainder of the paper is organized as follows:
Section II provides an overview of PLG for physics-based
puzzle games, including the previous method [10] that
Tanager is built upon. Section III introduces the design
of Tanager and how it extends the work of [10]. Section
IV reports the results of the experiments, including the
user study evaluating the design quality of the generated
levels. Finally, Section V concludes this paper with a
discussion of the results achieved and future works.

II. PROCEDURAL LEVEL GENERATION IN
PHYSICS-BASED PUZZLE GAMES

Most of the work in PLG for physics-based puzzle
games has been conducted in the context of the Angry
Birds game [10], [14], [15], [11], [12], however a few other
works also used Cut the Rope as testbed [16], [17]. An
Angry Birds level is composed of a stable pile of blocks
which contains pigs inside a shown in Figure 1. The
objective of the game is to kill all pigs with a limited
amount of birds. Despite the simplicity of the game,
generating feasible levels in this case is a quite complex
problem, which is composed of two parts: placing a
stable structure of blocks with pigs inside and adding
a set of birds that allows the player to kill all pigs. The
first method that attempted to approach this problem is
presented in [10], which is the base of Tanager and it is
described next.

Figure 1: Instance of Angry Birds level extracted from the
original game with its main game elements: slingshot,
birds, pile of blocks and pigs.

A. The Previous Generator
The previous generator [10] is a GA where a level is

encoded as a genotype composed of stacks of blocks.

A block can be either elementary or composed, where
elementary blocks are unitary pieces connected to form
composed ones. Each block, elementary or not, is rep-
resented by an integer value and a stack is structured
as an array of blocks (array of integers). The whole
level, in turn, is encoded as an array of stacks, i.e., a
structure compounded by arrays of blocks. The amount
of stacks can be different for each level and the stacks
sizes can change within a level. The distances (in pixels)
between each stack is also encoded in this representation
as shown in Figure 2. The desired amount of birds in the
level is a parameter that is not evolved by the GA in [10]
and hence it is not encoded in the level representation.

7
9
8

22 1
18 17 22
17 21 19

stack 1 stack 2 stack 3

148 183 0
distances

Figure 2: Level representation of the GA that Tanager
is built upon [10]. Each block as well as the distances
between the stacks are represented by integer numbers.
In this example, the first stack has three blocks (17, 18
and 22), the second one has six blocks (21, 17, 1, 8, 9 and
7) and third one has two (22 and 19). The distances from
stack 1 to stack 2 is 148 and from stack 2 to stack 3 is
183. Both the distances are measured in pixels.

The initial population is created using a probability
table, which defines the probability of a block to be
selected in a certain part of the level (ground, middle or
top). Table I is an example of such probability table. The
idea behind this table is that some blocks easily harm the
stability of the stacks when placed in certain parts of a
stack. For example, placing a triangular block in the first
position of a stack makes it very unstable. The first step
of the initialization process consists of randomly defining
the amount of stacks to be placed. After that, each
element of each stack is randomly sampled using the
probability table. Finally, random distances 0 ≤ d ≤ 300
(in pixels) are assigned in between the stacks using an
uniform distribution.

To decode this representation into an actual level, all
the stacks are placed on the ground starting from a
given coordinate x to the right of the slingshot. The
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Block Ground Middle Top
1 0.2 0.2 0
2 0.2 0 0.1
3 0 0.2 0.0
4 0.1 0.2 0.0
5 0.1 0 0.05
6 0.2 0 0.05
7 0.1 0 0.0
8 0 0.2 0.4
9 0 0.2 0.4
10 0.1 0 0.0

Table I: Probability table used by the previous level
generator. The amount of rows in the table depends on
the amount of building blocks used by the GA.

x0 coordinate of the first stack is exactly x and the the
xi coordinate of a stack i > 0 is calculated adding the
distance from the stack i to the stack i − 1 to xi−1. A
stack is built placing the first block on the ground and
then stacking the remaining ones on top of each other
using the same xi position.

The fitness function penalizes unstable levels using the
sum of the magnitude of each block’s velocity vector
(the less the total velocity, the less penalization). The
fitness function also rewards the levels with at least
one pig as well as an amount of blocks desired by the
user. Although this generator is able to create stable
levels, there is no guarantee that they are playable. Also,
the structures of blocks generated are quite simple and
no experiments were conducted to evaluate the design
quality of the levels.

B. Other Generators
The authors of [11] extended the GA proposed in [10]

by adding the Extended Rectangle Algebra (ERA) [18]
to calculate the difficulty of the generate levels. The
same level encoding was used, but the fitness function
was modified to evaluate how hard the evolved levels
are. This allows the user to set previously the desired
difficulty of the levels that must be evolved by the GA.
The method was validated with human players, but a
deep analysis of final design quality was not presented.
Tanager is also based on the GA proposed in [10], but
it is different from [11] because it has an advanced level
representation allowing duplicated blocks. Moreover,
Tanager’s fitness function uses an agent to define the
feasibility of a level.

Another level generator was proposed by [12] which
can create complex levels using a constructive approach.
The algorithm generates levels by first creating struc-
tures composed of elementary blocks and then placing
these structures throughout the space of the level. The
structures are composed of rows, which are recursively
generated using a probability table that determines the
likelihood of a block type being selected. The generated
structures are then placed either on the ground or on
floating platforms. The structures are populated with
pigs after being placed in the level. This approach does
not guarantee global stability for the generated levels,

therefore, it was evaluated according to the frequency
of stable levels generated. An evaluation of the design
quality is also not conducted by the authors in [12]. The
main difference between [12] and Tanager is the level
representation. In [12], levels can have structures more
general than the ones generated by Tanager. However,
Tanager guarantees both the global stability and playa-
bility of the levels, which is not guaranteed by [12] .

There are few other works approaching the problem of
PLG for physics-based puzzle games using the Cut the
Rope game as testbed [16], [17]. In [17], a method based
on Grammar Evolution generates levels using a fitness
function that tries to find the best placement of game
objects according to the rules of the game. The method
is evaluated according to expressivity and no design
quality analysis is conducted. One contribution of [17]
is a first attempt to evaluate playability of procedurally
generated levels for physics-based puzzle games. The
method presented in [17] can’t be directly applied for
level generation in the Angry Birds game. However,
Tanager’s approach for evaluating feasibility is similar
to [17] in the sense that both use an agent to evaluate
feasibility.

III. THE TANAGER LEVEL GENERATOR

Tanager is described through this section, where the
main points distinguishing it from its previous version
in [10] are highlighted. It starts with an initial population
composed of levels with randomly sampled stacks of
blocks, pigs and birds. A new fitness function evaluates
stability, playability and structural characteristics of the
levels via game simulations where unplayable levels are
penalized. A tournament selects levels for reproduction
based on their fitness values. New levels are created by
crossover and mutation operators that try to keep the
level stability. All new levels compose the population of
the next generation, except the worst one that is replaced
by the bes level from the current generation (elitism).
Tanager stops after a given number of generations or if
the fitness of the best level does not improve after some
generations.

A. Level Representation
The new level representation introduced here extends

that from [10] by encoding two new aspects: amount
of birds and duplicated blocks. The first one adds only
one integer to the genotype and the second one adds a
boolean for each block of the level, as showed in Figure
3. Duplicated blocks are elementary or composed blocks
that are added in the stack besides another one exactly
like it (for example, in Figure 3, the first three blocks
of stack 2 are duplicated blocks). To simplify how gaps
between stacks are represented, the distances between
stacks are removed in this new genotype and gaps are
now added using empty stacks (stacks containing only
one element -1). See Figures 2 and 3 for a comparison
between the old and the new representations.
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In the new genotype, the first element encodes the
amount of birds and all the others encode stacks. Each
element of a stack encodes information about a block
with an integer representing its index and a boolean
defining if it is duplicated or not. In this particular
example, the level has 4 birds and 8 stacks, where the
stacks 3, 5 and 7 are empty (they have only the -1
element). All the non-empty stacks have a pig on the
top (designed by 31 values). The second block of stack
1, the first three blocks of stack 2 and the first block of
stack 6 are duplicated since they have value 1 on the
boolean parameter.

31#|#0 31#|#0
31#|#0 #13#|#0# 13#|#0
13#|#0 28#|#0 28#|#0
12#|#0 29#|#1 29#|#0
13#|#1 10#|#1 #31|#0 15#|#0 31|#0

4 11#|#0 24#|#1 +1 #18|#0 +1 25#|#1 +1 #18|#0
birds stack#1 stack#2 stack#3 stack#4 stack#5 stack#6 stack#7 stack#8

Figure 3: A genotype and its correspondent decoded
level.

Decoding this new genotype into a level follows a
process different than the one presented in [10] (See
Section II for an explanation of the previous process).
First, the amount of birds is initially added to the level,
where one is placed on the slingshot and the remaining
stay behind it. Next, the stacks are placed starting in a
x0 coordinate that is calculated based on both the level
width L and the distance S between the two outermost
stacks of the level. Both L and S are highlighted in
Figure 3. We calculate D = L−S

2 , which is the distance
between the slingshot and the first stack of the level,
before determining x0. The value D is also the distance
between the last stack and the end of the level. Thus,
the coordinate x0 = D + xs of the first stack is assigned
by summing the distance D to the xs coordinate of the
slingshot. The coordinate xi = xi−1+ wi−1

2 + wi

2 of a stack
i > 0 is calculated by adding both half the widths wi−1

and wi of the wider block in stack i−1 and i, respectively,
to the coordinate xi−1 of the stack i− 1. The width wi is
equal to a constant k > 0 for all the empty stacks.

B. Blocks Classification System
Another novelty introduced is a classification system

for blocks. They are now classified by their shapes, which

helps to build more diverse and stable stacks. In this
system, a block is necessarily from one of the following
classes: R, T , C or B. The R blocks have rectangle
shapes, T blocks have podium shapes (shapes similar
to the letter “T”), C blocks have circular shapes and
B blocks are boxes, i.e. rectangular blocks that can be
stacked on top of other blocks. Figure 4 shows examples
of blocks from different classes. This classification system
based on shapes is introduced to help building stable
stacks of blocks. There are blocks that will surely harm
the stability of the stacks when placed over another.
Thus, each class has a set of “safe relationships” with
other classes, as showed by the graph illustrated in
Figure 5.

(a) Box. (b) Podium.
(c) Rect. (d) Rect. (e) Circle.

Figure 4: Instances of blocks from different classes, the
first three are composed and the others are elementary.

A node in such graph represents a class and a direc-
tional edge from node a to b represents that a block from
class a can be stacked on top of another block of class
b. For example, the graph shows that only boxes can be
stacked on top of C blocks and any one can be stacked on
top of T , R and B blocks. Every time Tanager must place
a block over another, it will first check if one has a safe
relationship with the other. This relationships graph, by
itself, does not guarantee the stability of the stacks hence
Tanager still has to account for level stability during
the evolutionary process. The graph helps on the search
process avoiding the exploration of stacks that surely
would not form stable structures.

T

C

R B

Figure 5: A graph representing safe relationships be-
tween different block classes.

C. Random Initialization
The first population of the GA is initialized with levels

that have both a random amount (greater than zero)
of stacks and birds. Each stack is formed by a random
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amount of blocks, which may be zero for empty stacks.
Algorithm 1 describes in details the process of generating
a random level. Initially, it samples a random integer
1 ≤ b ≤ B using a uniform distribution (line 2), where
B is the maximum amount of birds allowed. Next, it
samples the width (in the game world space) of the
stacks array using a normal distribution with both µ
and σ equal to the half of the total level width W
(line 4). Stacks are iteratively generated until the defined
width has been fulfilled (line 5-21). To build a stack, the
algorithm first samples its height (in the game world
space) using a normal distribution with both µ and σ
equal to the half of the total level height H (line 9).
With the height defined, the algorithm places random
blocks one by one, always considering the graph of
relationships. This process is performed until the stack
reaches its height or there are no blocks that can be safely
added (line 10).

Algorithm 1: Sampling random levels.

1 A← {};
2 b← U(1, B);
3 wfulfilled ← 0;
4 wA ← N(W ∗ 0.5,W ∗ 0.5);
5 while wfulfilled < wA do
6 S ← {};
7 V ← all blocks;
8 hfulfilled ← 0;
9 hs ← N(H ∗ 0.5, H ∗ 0.5);

10 while hfulfilled < hi and V is not empty do
11 cnext ← PickRandomSafeClass(cprev);
12 lnext ←

PickRandomBlockFromClass(cnext, V );
13 if cnext is not a Box then
14 if cnext is not a Podium and U(0, 1) < 0.5

then
15 DuplicateBlock(lnext);

16 if BoundingBoxAreaprev >
BoundingBoxAreanext then

17 add lnext to S;
18 hfulfilled ← hfulfilled + hnext;

19 else if blocks in the top of S fit inside lnext then
20 add lnext to S;
21 hfulfilled ← hfulfilled + hnext;

22 InsertPigs(S);
23 if hfulfilled > 0 then
24 wfulfilled ← wfulfilled + ws;

25 else
26 wfulfilled ← wfulfilled + k;

27 add S to A;

To add blocks in a stack, the initialization algorithm
randomly selects a class cnext based on its relationships
(see Figure 5) with the previously stacked block cprev

(line 11). The new block lnext is randomly chosen from
the array V among all those from class cnext (line 12).
Function PickRandomBlockFromClass removes the se-
lected block from V , which ensures that the selection is
done without replacement. If this is the first block of the
stack, any class can be selected and, consequently, any
block either. If the selected block is not a box (line 13),
the next step is to check if it is also not a podium and
“flip a coin” to define if the block will be duplicated or
not (line 14). Podiums cannot be duplicated because they
can easily collapse the stack.

After defining if the selected block will be duplicated,
the algorithm compares the bounding box areas of the
previous block and the next one (if it is not the first).
This comparison is a simplified solution to the problem
of discovering if two non-squared stacked blocks will
fall when submitted to the gravity force [19]. Instead of
analyzing the real shapes of the blocks, the algorithm
assumes that they have a square shape. Therefore, if the
bounding box area of the previous block is greater than
the next one (line 16), lnext is added to the current stack S
(line 17) and the height counter hfulfilled is incremented
with the block height hnext (line 18). On the other hand,
if the selected block is a box, the generator tries to cover
the blocks in the top of the stack that fits inside it (line
19). Depending on the selected box and on the stack
state, it will not be able to cover anyone. In this case,
the selected box is not added. Otherwise, it is added
(line 20) and the height counter is incremented (line 21).

The last step for creating a stack is to add pigs in
available spaces, which in this case are either empty
spaces inside boxes or the top of the stack. The function
InsertPigs (line 22) adds a random amount of pigs to
the stack by iterating among all its blocks looking for
available spaces. If this function receives an empty stack
as input, it simply “flips a coin” to decide if the pig will
be placed on the ground or not. Otherwise, the function
looks for an available space in the stack and, if such
space is found, it “flips a coin” to decide if the pig will
be placed there or not. If the procedure reaches the top of
the stack without having added any pig, it automatically
adds a pig in that place. In this case, if the top block has
a circular shape, the algorithm substitutes it by a pig.

Once a stack is completely built, the algorithm incre-
ments the width counter wfulfilled with either the width
of that stack ws (line 24) or with a constant width k
(line 26). The second option only happens if the created
stack is empty. Finally, the algorithm adds the current
stack S to the array A(line 27) and it tries to generate
the next one. If all the stacks are empty at the end, the
algorithm randomly selects one of them and substitute
it by another one with height equal to H ∗0.5, composed
only by random rectangular blocks and a pig on the top.

D. Fitness Function

The initialization algorithm described in the last sec-
tion does not ensure the levels are fully stable and
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neither the amount of birds is enough to kill all pigs.
The fitness function measures if a level satisfies these two
constraints using a game simulation with an intelligent
agent. Stability is measured by the total velocity of the
blocks during the beginning of the simulation. When the
simulation starts, the agent waits to throw the first bird
until the blocks stay stable. This means to wait until
the magnitude of their velocity vectors becomes zero.
During this period, the algorithm measures the velocity
of all blocks 10 times per second and accumulates these
values in a variable s.

After measuring stability, the level feasibility is evalu-
ated. A level is only considered feasible if the amount of
pigs pf at the end of the simulation is equal to zero. This
solution is strongly dependent on the strategy used by
the agent to kill pigs. In the applied strategy, the agent
initially selects a random pig of the level and tries to
shot a bird on it. If the agent doesn’t succeed, a random
pig is selected again. If the same pig is selected twice
in a row, the agent adds a noise in the pig’s position
and throws the bird toward such position. The idea is
to break blocks around that may be protecting the pig.
On the other hand, if the selected pig pi in the ist shot is
different from the previous pig pi−1, the agent will shot
directly at the direction of the pig pi. When throwing a
bird toward a pig, the agent does not consider if there
are blocks in front of it. The bird will be always thrown
with the highest possible velocity.

As mentioned before, besides evaluating stability and
feasibility, the fitness function also evaluates some struc-
tural characteristics of the levels. More specifically, it
measures the percentage of blocks in the level and the
percentage of birds that is needed to kill all pigs. These
metrics are used to control the algorithm output and
they are defined, respectively, by parameters 0 ≤ ln ≤ 1
and 0 ≤ bn ≤ 1. The fitness function is mathematically
described by Equation 1.

fitness(x) = |bbn ∗Bc−Bu|+ |bln ∗Lc−Lb|+pf + s (1)

In this function, B is a constant that defines the
maximum amount of birds allowed in a level, Bu is
the amount of birds used during the simulation. The
constant L defines the maximum amount of blocks
allowed in a level and Lb is the amount of blocks in
the beginning of the simulation. The first term of the
equation calculates the distance between the number
of birds that should be used to kill all the pigs and
the number that was actually used. The second term
calculates the distance between the number of blocks
desired in the level and the number of blocks that the
level started with. If these terms are both zero, the level
has all the desired characteristics. The remainder terms
of the equation evaluate the number of pigs in the end
of the simulation pf and the stability s of the blocks
in the level, respectively. The level is considered stable
and feasible when these two variables are both zero.

The design of Equation 1 shows that the objective of
the proposed GA is to find its minimum value.

The physics engine used during the simulations does
not work deterministically. The strategy used by the
intelligent agent during the simulation is not determin-
istic as well. Thus, it is not guaranteed that the same
level encoding (individual) will have the same fitness
when evaluated many times. It is possible to reduce
this problem by running the simulation several times
for the same level and then considering the average of
calculated values as the final fitness of that level [20].
This approach increases considerably the total evolution
time, so another one was adopted in this paper.

If a level l is evaluated once and the intelligent agent
was able to finish it, we know a human player will be
able to finish that level as well. This is true because
the agent uses exactly the same controls as the human
player. Based on this argument, the proposed GA never
recalculates the fitness value for a level. This is done
by caching the fitness calculations with a hash table that
stores the levels as keys and their fitness as values. Every
time the GA must evaluate a level, it searches for the
level inside the table. If it finds the level, the stored
fitness is returned, otherwise, a simulation is executed
and a new instance is added in the table.

This solution has two main advantages: considerable
reduction on the amount of simulations and freedom to
design the agent strategy, allowing random components.
On the other hand, the hash table may consume a lot
of extra memory, depending on the accuracy of the
algorithm when exploring the search space. Moreover,
levels that are considered unplayable and/or unstable,
but actually are, will be penalized and never reevaluated
again. Thus, their chance of surviving the evolution will
be low and hence their features won’t be propagated.

E. Genetic Operators

The fitness values are used to select n individuals
for reproduction, where n is the size of the population.
This process is performed iteratively and, in each of
the n iterations, an individual is selected via a tour-
nament composed of two different random parents. A
new generation is then formed by applying a crossover
operation in each pair of selected individuals, which
in turn generates two new children. This operation is
followed by a mutation that is performed separated on
each child.

Both genetic operators are composed of two steps,
the first one is applied on the birds and the second
one on the stacks. Crossover recombines two individ-
uals (parents) applying an arithmetic crossover on the
amount of birds and an uniform crossover on the stacks.
Considering two parents p1 and p2 with x1 and x2 birds,
respectively. The arithmetic crossover produce two new
amounts of birds y1 and y2, as shown in Equation 2.
In this Equation, 0 ≤ r ≤ 1 is a random weighting
factor chosen before each crossover operation. Since the
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amount of birds is an integer, the crossover results are
rounded using the floor of their values.

y1 = br ∗ x1 + (1− r) ∗ x2)c
y2 = b(1− r) ∗ x1 + r ∗ x2)c (2)

The other part of the crossover is intended for gen-
erating two new arrays of stacks from two parents p1
and p2 with m and n stacks, respectively. The uniform
crossover generates the stack i ∈ [1,max(m,n)] of a new
individual (child) randomly selecting a stack either from
p1 or from p2 with same chance. If the size of the two
parents are different (m 6= n) and assuming m > n, each
one of the m− n last columns from p1 will have 50% of
chance to be included in the new individual. Otherwise
(n > m), each one of the n−m last columns from p2 will
have 50% of chance to be selected. Figure 6 shows an
example of this crossover operation.

!!3!|!0 !!2!|!0
31!|!0 31!|!0

31!|!0 !!4!|!0 31!|!0 !!1!|!0
11!|!0 !!4!|!0 !!6!|!0 22!|!0 31!|!0

1 16!|!0 !!6!|!0 4 15!|!1 15!|!1 12!|!1
birds stack!1 stack!2 birds stack!1 stack!2 stack!3

!!2!|!0 !!3!|!0
31!|!0 31!|!0

31!|!0 !!1!|!0 31!|!0 !!4!|!0
11!|!0 31!|!0 31!|!0 !!6!|!0 !!4!|!0

3 16!|!0 15!|!1 12!|!1 2 15!|!1 !!6!|!0 31
birds stack!1 stack!2 stack!3 birds stack!1 stack!2 stack!3

Parent'1

Child'1 Child'2

Parent'2

Figure 6: A crossover example. The two individuals on
the top are the parents and the others on the bottom are
the generated children.

In this example, the weighting factor of the arithmetic
crossover is 0.2 and the birds amounts are 1 and 4, so
the generated values are 3 for the first child and 2 for
the second one. To generate the stacks of the child 1, the
uniform crossover selected the first stack of the parent
1 and the last 2 stacks of the parent 2. To generate the
stacks of the child 2, it selected the first stack of the
parent 2 and the second stack of the parent 1. In this
case, the crossover did not selected the third stack of the
parent 2, so the third stack of the child 2 is empty.

There is a probability (mutation rate) to apply the
mutation operator over the two new individuals gen-
erated after crossover. This mutation randomly changes
the amount of birds and each stack of the individual
with a certain likelihood. The operation on the amount of
birds randomly generates a new integer value 1 ≤ b ≤ B.
On the other hand, the mutation on the stacks randomly
generates a new stack following the same steps described
on the initialization algorithm. Figure 7 shows an exam-
ple of the mutation operation applied over the amount
of birds and the stacks. The amount of birds of the first
child of Figure 6 changes from 3 to 5. The mutation

operation also changes stack 2 of child 1 and stack 3
of child 2.

!!3!|!0
31!|!0 31!|!0

31!|!0 31!|!0 !!4!|!0 !!1!|!0
11!|!0 31!|!0 !!6!|!0 !!4!|!0 19!|!0

5 16!|!0 31!|!0 12!|!1 2 15!|!1 !!6!|!0 19!|!0
birds stack!1 stack!2 stack!3 birds stack!1 stack!2 stack!3

Child&1 Child&2

Figure 7: A mutation example on the two individuals
generated in Figure 6.

IV. EXPERIMENTS

Tanager was evaluated by three sets of experiments.
The first one is an evaluation of the GA to show its
performance and how the fitness values improve over
generations. In the second experiment, the expressivity
of Tanager is analyzed by generating a high quantity of
levels and analyzing their structural characteristics. The
third experiment is an user study to measure the design
quality of these levels considering difficulty, immersion
and fun. In all the experiments, the GA is set with
the following parameter values: population size of 100,
tournament size of 2, crossover rate of 95% and mutation
rate of 10%. The method runs for 25 generations at most
or for 10 generations without improvement over the best
individual. The maximum amount of birds (B) is set to
5 because the hand-authored levels of the original game
do not usually have more than 5 birds. The maximum
amount of blocks (L) is set to 100 since it makes a level
practically full of blocks. Moreover, with these values,
Tanager should be able to generate a wide variety of
levels.

A. Performance of the Genetic Algorithm
Tanager’s performance is measured based on the evo-

lution of the best fitness through generations. Figures
8 and 9 show the evolution of the average of the best
fitness within 30 independent executions. It is also de-
picted the average (µ) and standard deviation (σ) values
for each component of the fitness function: stability s
of blocks, amount of pigs pf at the end of the simula-
tion (Figure 8), and the distance to desired amount of
birds and blocks (Figure 9). Thus, these results allow to
evaluate the characteristics of the best levels through the
generations. During the experiment, the percentage of
blocks is set to ln = 0.25 and the percentage of birds
needed to kill all pigs is set to bn = 0.25, which means
the generated levels should have 25 blocks and 1 out of
4 birds should be required to complete them.

Analyzing the first generation in Figure 8, one can
understand the performance of the initialization method
on generating stable levels for the first population of the
GA. The µ and σ values are approximately 0.25 and 0.4
for the stability component s, respectively. This means
that 95% of the initial levels have s ≤ 1.05 since, as
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described in Section III-D, the stability is the sum of
the velocity vectors of all the blocks before the first bird
shot, measured 10 times per second. In the Angry Birds
clone, an object with velocity magnitude of 1 moves 100
pixels/s and the playable area of the level (to the right
of the slingshot) has approximately 600 pixels. Figure
9 shows that the average amount of blocks in the first
generation is approximately 25 − 4.6 = 20.4. It is hard
to know how the stability of 1.05 is divided among
these 20.4 blocks. However, if the stability is divided
equally among them, then a block moves on average
1.05×100

20.4 = 5.14 pixels/s during the stability evaluation.
This value represents 5.4

600 = 0.009 times the playable area
of the level. Thus, 1.05 is a low value and hence the
initialization method is able to generate a great amount
(95%) of levels with high stability.

Figure 8: Fitness improvement over generations, high-
lighting the evolution of the two last components of the
fitness function: stability s and pigs at the end of the
simulation pf .

The average stability was improved through all gen-
erations in Figure 8, reaching values very close to 0
from the 19th generation on. This indicates that the
proposed genetic operators are not only capable of
keeping the stability of the initial population of levels,
but also improving it to be almost absolutely stable.
The initialization algorithm does not reason about the
levels feasibility, but from the µ = 2.7 and σ = 2.3
values of the pigs fitness component (pf ) at the first
generation in Figure 8, one can see that approximately
85% percent of the levels are infeasible. This means that
at least one pig survived the simulation. However, along
the first 10 generations, Tanager strongly improved pf
components by reducing it to almost 0. Moreover, this
value was reduced to exactly 0 from the 21st generation
until the last one. This shows that, besides generating
stable levels, Tanager also guarantees their feasibility.

The evolution of the remaining two fitness compo-
nents are shown in Figure 9. While the last two compo-
nents s and pf are related to stability and feasibility, these
ones represent the desired characteristics of the levels in
terms of birds and blocks. In the first generation, µ = 4.6
and σ = 4 values for blocks shows that approximately

Figure 9: Fitness improvement over generations, high-
lighting the evolution of the two first components of the
fitness function: distance to desired amount of birds and
blocks, respectively.

85% of the levels do not have the desired amount of
blocks. Among all the four fitness components, this
is the one that starts furthest from its optimal value.
However, Tanager quickly optimized such value to less
then 1 in the first 7 generations. It used the remaining
18 generations to optimize this component to its optimal
0 value. Regarding the birds component, the µ = 1.2
and σ = 0.8 point out that 85% of the initial levels
also do not have the desired amount of birds. Different
from other components, this one gets slightly worst in
the first 8 generations. However after that it constantly
get optimized, reaching its optimal value at the end
of the evolutionary process. These results show that in
average Tanager successfully finds the optimal value of
the fitness function. Thus, it is capable of generating
stable and feasible levels with a desired amount of blocks
and birds.

B. Expressivity Analysis
Expressivity analysis was proposed by [21] as a way to

evaluate the variety of levels that a generator is capable
of creating as well as the impact of changing input
parameters. The majority of Angry Birds generators pro-
posed so far was evaluated according to three metrics:
frequency, linearity and density [10], [11], [12]. The levels
generated by Tanager are also evaluated according to
these metrics. Frequency represents the average amount
of relevant elements in the level. This metric is calculated
by counting the amount of a certain game object and
dividing it by the total amount of objects in the level. In
this particular case, we are interested in measuring the
frequency of birds and pigs. The amount of blocks is not
measured because it is a parameter of the algorithm.

Linearity metric is calculated by finding the variance
of the stack heights in the level (including the empty
ones). Results are normalized to [0,1], where 1 is highly
linear and 0 is highly non-linear. Therefore, stacks with
different heights present low linearity, while stacks with
similar heights have high linearity. Thus, the linearity
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of a level is measured using Equation 3, where hi is the
height of the stack i, h̄ is the average height of the stacks
and H is the total level height. Figure 10 illustrates two
levels with different linearities.

linearity = 1−

√∑
i=1

(hi − h̄)2√∑
i=1

(hi −H)2
(3)

(a) A level with high linearity
(0.98).

(b) A level with low linearity
(0.14).

Figure 10: Example of levels with high difference of
linearity. Level (a) has high linearity because all of its
stacks have a similar height. In the other hand, level
(b) has low linearity because its stacks heights are very
different.

Density measures the stacks arrangement among the
playable area of the level. This metric is calculated by
adding the width of all non-empty stacks in the level
and dividing it by the total level width. Density values
are normalized to [0,1], where 1 is the highest and 0 is
the lowest density measure. This means that levels with
many stacks and wider blocks have a high density, while
levels with a few stacks and narrower blocks have low
density. Equation 4 gives the density of a generated level,
where wi is the width of the non-empty stack i and W
is the total level width. Figure 11 illustrates two levels
with different densities.

density =

∑
i=1

wi

W
(4)

(a) A level with high density
(0.98).

(b) A level with low density
(0.14).

Figure 11: Example of levels with high difference of
density. Level (a) has high density because it occupies
almost the whole playable area. In the other hand, level
(b) has low density because its stacks occupies a small
area.

A total of 500 levels is used to evaluate the expressivity
considering different combinations of parameters bn and
ln. First, it is set bn = 0.5 and 100 levels are generated for
ln= 0.25, 0.5 and 1.0. Next, it is set ln = 0.5 and another
100 levels are generated for bn = 0.25 and 1.0. To visually
describe how the GA outputs look like, Figure 12 shows
some levels that came out during this process.

Figure 12: Example of levels generated with the GA
using different values of ln and bn.

The first analysis evaluates the frequency of pigs and
birds in the generated levels. Figure 13 shows charts with
the average and standard deviation of these values for
each variation of bn and ln. In all results, the frequency
of pigs stays between 10% and 20% of the total amount
of blocks in the level. Changing the characteristics of the
levels in terms of bn and ln does not dramatically affect
the amount of pigs in the levels. This can be explained
by how pigs are inserted in the levels (see Section III-C).
If there are more boxes with empty spaces, there is
more chance to insert pigs into them. This process is
not related with the amount of birds in the level, but
it is affected by the type of blocks (boxes with empty
spaces). Thus, this result also shows that the frequency
of boxes is not considerably affected by parameters bn
and ln.

Frequency of birds is ranging in average from 0.6 to
0.9 in Figure 13. These values are normalized by the
maximum amount of birds B, which is defined as 5
for all the experiments. Thus, levels are likely to have
between 3 and 5 birds. The standard deviation values
show that, in all the variations, approximately 95% of
the levels have more than 1 bird. Therefore, Tanager
rarely generates a level with only one bird. This can
be explained by the components of the fitness function
that affect the amount of birds. Birds are inserted in a
level in order to meet the requirements defined by the
user bbn ∗ Bc and to make the level feasible pf . In the
experiments, the lowest bird’s requirements considered
is b0.25 ∗ 5c = 1. In this case, to minimize the fitness
function, Bu has to be equal 1 and pf equal 0. The
results in in Figure 13 showed that the amount of pigs
in average is at least 10% of the amount of blocks. The
lowest amount of blocks considered in the experiments
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is ln = 0.25. Thus, the simplest generated levels have
in average |0.10 ∗ 0.25 ∗ L| = 2 pigs. Using exactly one
bird (Bu = 1) to kill 2 pigs (pf = 0) is not easy, specially
in levels with a low amount of blocks. For values of
bn > 0.25, Tanager will generate levels with more than
one bird in order meet the constraints added by the user.
Thus, it is very uncommon for Tanager to generate levels
with only one bird.

Figure 13: Impact in frequency when variating the pa-
rameters bn and ln.

The average frequency of birds increases when bn =
0.5 and ln is raised, as shown by the three rightmost
columns. The non-parametric Kruskal-Wallis test was
applied to compare these results, since the hypothesis
of normal distribution is not fulfilled by samples for a
parametric test. Kruskal-Wallis test returned a p-value
< 0.05 showing a statistical significant difference among
the results.This leads to the expected conclusion that
levels with more blocks need more birds to be finished.

When parameter ln is fixed and bn changes (three
leftmost columns), the amount of birds does not increase
monotonically as a function of bn. The three leftmost
columns indicate that Tanager generated levels with the
same amount of blocks (ln = 0.5) requiring a different
amount of birds (from 3 to 5). It is important to high-
light that the total amount of birds will affect the level
difficulty, once it can be harder to play a level with a
given amount of blocks using fewer birds.

Levels with a large amount of blocks are likely to
have higher stacks, which can increase the fragility of
the whole structure. If the height difference between
these stacks is very high, the chance of a thrown bird to
destroy blocks and pigs is high. It increases even more if
there are empty spaces between stacks. However, results
show that levels with more blocks need more birds to kill
all pigs. This indicates that levels’ stacks have similar
heights and there are few empty spaces between them.
It is hard to conclude about structural characteristics of
levels based only on frequency results. These character-
istics can be deeply discussed from linearity and density
results.

Figure 14 illustrates how parameter variation impacts
on the linearity and density of the levels. Changing the

parameter bn does not impact considerably the linearity
and density of the levels, once levels with ln = 0.5 are
not complex enough due to constraint on the amount
of blocks. Thus, the proposed agent can solve them
most of the time, independent of the bn value. In this
case, Tanager does not have to (or can’t, due to the
constraint on the amount of blocks) search for very
distinct structures, leading the levels with similar values
for linearity and density.

Figure 14: Impact in expressivity when variating the
parameters bn and ln.

Parameter ln, on the other hand, has a relevant impact
over linearity and density. Most of the levels generated
with 25 blocks (ln = 0.25) have high linearity (between
0.8 and 1) and low density (between 0.2 and 0.4). The
majority of levels with 50 blocks (ln = 0.5) has high
linearity (between 0.7 and 9) and a medium density
(between 0.4 and 0.6), while levels with 100 blocks
(ln = 1) have intermediary linearity and high density.
Linearity values confirm that the height variation among
levels’ stacks is low. Density values show that Tanager
has a bias for distributing blocks among few stacks,
instead of creating more stacks with smaller heights.

Overall, increasing the amount of blocks directly in-
creases the level density, but slightly decreases their
linearity. This is an expected result once levels with many
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blocks require more space to be placed. Moreover, there
are spaces in the expressivity range that the generator
does not cover, mainly levels with low linearity (less
than 0.5). Levels with linearity less than 0.5 have both
tall and short stacks, which requires a high amount of
blocks. This level configuration is feasible but is likely to
be unstable (mainly because of the tall stacks). In order
to increase the stability of the levels, Tanager tends to
generate stacks with similar heights, so they can support
themselves side-by-side.

The expressivity results showed that Tanager can
generate a considerable variety of levels, with linearity
values ranging from 0.5 to 1 and density from 0 to
1. Considering this variety and the fact that all these
levels are stable and feasible, we can say that caching the
fitness does not lead to big level generation problems.

C. Immersion Analysis
This section presents an user study which is intended

to evaluate immersion aspects of the generated levels.
According to [22], immersion can be described as the
degree of involvement of a player with a computer
game. Therefore, an immersible game has the ability of
drawing people in, providing an appealing distraction
from everyday worries and concerns. Such degree of
involvement can be measured by a combination of hu-
man, computer and contextual factors like game prefer-
ence, game construction, environmental distractions, etc.
Considering these factors, [22] proposed a questionnaire
composed of 31 questions for evaluating immersion in
games. A small version of this questionnaire with 6
questions (see Immersion questionnaire in Appendix A)
is used in this experiment to evaluate players’ immersion
while playing levels generated by Tanager. To reach a
better analysis, the same evaluation is also performed
over levels adapted from the original Angry Birds. Thus,
this experiment allows a comparison of immersion as-
pects between levels generated by Tanager and levels
from the original game.

The user study is conducted using the Angry Birds
clone presented in [10]. The questionnaire is inserted in
such clone, which is compiled into a web build that can
be accessed online 1 from any web browser. This version
of the game contains two different sets of levels P and
R presented for players in random order. Each set has 5
levels, where those in P are generated by Tanager and
those in R are collected and adapted from the original
Angry Bird game. Set P is defined by generating 3
levels for each one of the 5 parameter configurations
showed in Figure 13. Generating a level means picking
the level with the best fitness at the end of the evolution
process. For each configuration, it is randomly selected
only one of these 3, totalizing 5 levels with different
characteristics. Set R is defined by selecting 5 random
levels from all of those of the first episode from the

1http://www.lucasnferreira.com/AngryBirdsWeb/AngryBirdsWeb.
html

original game (called Poached Eggs), which are adapted
to the clone version.

One limitation of this clone is that it supports only
red birds, so all non-red birds are replaced by red ones.
The amount of birds is increased sometimes, based on
how the replacement of non-red birds impacts feasibility.
The clone also does not support glass blocks which
are replaced by either wood or stone blocks. Adapting
the levels does not dramatically change the strategy
that players have to use to complete the levels. This is
because the majority of the levels in the first episode
of the game does not strictly require the use of non-
red birds. Therefore, this adaptation should not impact
considerably how the players report similarities between
the two sets P and R. With these two sets, the structure
of the immersion experiment is as follow:

1) Player opens the game url in its browser and a
screen containing the description of the experi-
ment is presented.

This screen informs the player that he/she will
play two different sets of levels and will evaluate
each one just after playing it. At this moment, the
player does not know the differences between the
sets.

2) A profile questionnaire is presented to the player.
3) First set of levels is presented to the player.

The set is randomly selected between P or R.
4) Player evaluates, using the immersion question-

naire in Appendix A, the set played.
5) Second set of levels is presented to the player.

If P was already played, then R is presented.
Otherwise, P is presented.

6) Player repeats task 4 for the second set.
7) A new screen appears questioning the player

about which of these two was generated by com-
puter.

This screen informs, before the question, that one
of the sets were manually produced and the other
one was generate by computer.

8) Another screen appears giving the correct answer
of this question.

9) Player evaluates, using the last questionnaire in
Appendix A, the similarity between the two sets
and its perception about the procedurally gener-
ated levels.

The last 3 steps of the experiment are not intended
to measure immersion, but the similarity between the
two groups of levels. Step 7 is a Turing test in order
to measure if the player is capable of realizing which
of the groups was generated by a computer. In step 8,
the correct answer of the Turing test is revealed and, in
step 9, the player must answer a questionnaire in order
to describe how similar the two groups were. Giving
the correct answer to the player is important to ensure
he/she will be able to correctly analyze how similar the
procedurally generated levels are in comparison to the
ones designed manually.
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This experiment was conducted with 139 players over
the Internet and the distribution of age, gender and
education of the participants is showed in Table II.
The participants were recruited via social media and
no rewards were provided to them. The majority of
participants are male between 21 and 30 years old with
complete higher education.

Age Players
less-9 1
10-20 12
21-30 101
31-40 22
41-50 3
41-60 0

61-more 0

Gender Players
Female 19
Male 120
Other 0

Education Players
Primary 1

Secondary 11
Bachelor 67
Master 48
Doctor 12

Table II: Distribution of age, gender and education of the
players in the immersion user study.

The experience of the players on general games and
their experience on Angry Birds are measured with a
five-level Likert scale, where 1 means “not at all” and
5 means “a lot”. As shown in Table III, the majority
of players have great experience with games (approxi-
mately 82% answered 3 or higher) and little experience
in playing Angry Birds (approximately 76% answered 3
or lower).

General Games Angry Birds
1 7.91 % 20.14 %
2 10.79 % 26.62 %
3 23.74 % 29.50 %
4 23.74 % 17.99 %
5 33.81 % 5.76 %

Table III: Distribution of experience in general games and
Angry Birds of the players in the immersion user study.

The score of each question of the immersion question-
naire is also measured using a five-level Likert scale,
where 1 means strongly disagree and 5 means strongly
agree. The distribution of scores per question for both
sets P (Tanager) and P (Rovio) is presented in Table
IV. The first two questions are related to each other and
they evaluate how engaged players are while playing
the levels. The consistency of the answers between these
two similar questions suggests that the engagement ex-
perienced by the players was similar in the two groups.

Q1 Q2 Q3 Q4 Q5 Q6
Attention Time Challenge Give up? Enjoyed? Replay?

T

1 8 19 77 24 4 20
2 13 35 25 32 16 28
3 42 43 16 35 42 31
4 56 34 10 35 52 38
5 19 7 10 12 24 22

R

1 6 23 13 67 7 23
2 15 35 28 30 20 35
3 53 43 49 22 47 39
4 49 25 38 14 54 27
5 15 12 10 6 10 15

Table IV: Distribution of scores per question about im-
mersion for both Tanager (T) and Rovio (R) levels.

Questions 3 and 4 are also related and they measure
the challenge that players faced while playing the levels.

The answers of question 3 are very different between
the groups. More than 100 players reported that the
Tanager levels have low challenge (scores equal or less
then 3), while approximately 100 players found that the
Rovio levels have high challenge (scores equal or greater
then 3). This result shows that the Rovio levels are
considerably harder than the Tanager ones. One of the
main reasons for that is the level representation based on
stacks used in Tanager. This bias on the level structures
makes it easier for players to complete the levels because
their solutions are more predictable. The graph of safe
relationships does not lead to this difficulty limitation
once it only helps Tanager to not evolve levels that are
surely not stable and hence not feasible.

The answers of question 4 show that, even though the
Rovio levels were challenging, they were not excessively
hard. This is an expected result because levels in com-
mercial games are usually tested and polished through
several rounds of playtesting, in order to avoid the
players to get extremely frustrated. In the Tanager group,
a similar amount of players answered this question with
the intermediary scores 2, 3 and 4. This means that a
considerable amount of players found the Tanager levels
excessively hard and another similar amount did not.
Different from the hand-authored levels, the generated
ones do not consider feedback from players in their de-
sign process. Tanager’s fitness function does not model
difficulty explicitly. Thus, it is expected that the levels
will have varied difficulty because we are analyzing
levels with high difference on the amount of blocks and
birds. Considering the answers of questions 3 and 4
together, we notice that most of the Tanager levels are
not challenging, but the ones which are challenging, are
also more frustrating than the Rovio ones.

The last two questions are also connected and they
measure the enjoyment/fun experienced by the players.
Similar to the questions 1 and 2, the answers of the play-
ers of these questions are very similar in both groups.
The consistency of the answers shows that players en-
joyed playing both groups. After answering the immer-
sion questions for both groups, players were warned that
one of them is generated by a computer and they have to
discover which one it is. A total of 68 players failed the
test and 71 passed it. These values are very close, which
again suggests a similarity between the two groups of
levels. In order to analyze how the experience of the
players impact on their ability to distinguish the groups,
Figure 15 shows the distribution of players who failed
the test per experience class.

The way that general game experience impact on their
capabilities of distinguishing the level groups is unex-
pected. The more experienced players are, the less accu-
rate they are on performing this task. This suggests that
experience on general games does not help players to
recognize angry birds procedural levels. The distribution
of players according to Angry Birds experience, on the
other hand, has a normal shape. The majority of players
who failed the test have an average experience. These
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Figure 15: Distribution of players who failed the Turing
test considering their experiences on general games and
Angry Birds.

players probably found it hard to pass the test because
they are experienced enough to know the mechanics of
the game, but not to recognize patterns in the structure
and/or puzzles of the levels. The very experienced play-
ers probably recognize these patters and that is why they
can better distinguish the two groups of levels. It is hard
to know the reasons why only a few non-experienced
players failed the test. Because they don’t know much
about the game and its original levels, probably they
guessed their answers almost randomly.

In the last step, players have to answer two questions
about similarity between the two groups of levels. At
this point, they already know which group is generated
by a computer. The similarity scores use the same scale
of the immersion questionnaire. However, they collect
two different metrics: similarity between the groups and
perception of the players that levels from Group P are
generated by a computer. The distribution of scores per
question is shown in Table V.

Q1 Q2
Total Failed Passed Total

1 13 11 2 22
2 29 26 4 40
3 35 22 13 38
4 44 7 37 23
5 19 2 15 7

Table V: Distribution of scores per question about sim-
ilarity between Tanager and Rovio levels. Scores for
question 1 are reported in three formats: considering the
total amount of players, only the ones who failed the
Turing Test and only the ones who passed it.

The answers for the question 1 show that the majority
of players who failed the test indeed did not thought
that the Tanager levels were generated by a computer.
They also point out that the majority of players who
passed the tests indeed could recognize that Tanager
levels were procedurally generated. This suggests that
the generated levels have some specific differences when
compared to the original ones. Results of the previous
questions showed that both groups are similar in terms

of engagement and enjoyment, but Rovio levels are
more challenging than the Tanager ones. Therefore, these
results suggest that players distinguished the differences
in terms of challenge or they found the structures of
the levels to be different. The answers of question 2
show that, when asked explicitly about similarity, the
majority of players (more than 100) found the levels
not very similar (answers equal or less than 3). Thus,
the two level groups present visible differences in the
arrangement of their objects. This can be explained by
the level representation used by Tanager (see Figure 3),
which adds a bias (stacks placed side-by-side) to the
structure of the generated levels. Rovio levels do not
present such biased structures.

V. CONCLUSION AND FUTURE WORK

This paper presented a genetic algorithm (GA) for
procedural generation of levels in physics-based puzzle
games called Tanager. Levels were evaluated by a fitness
function that carries about the stability of objects in the
level and its feasibility. Stability is measured by the total
velocity of the objects during the beginning of the simu-
lation and feasibility is measured by a bot that randomly
selects pigs to shoot. Three sets of experiments were
performed in order to evaluate the proposed algorithm.
The first one evaluates the Tanager performance in terms
of evolution of the best fitness through generations.
Results showed that, in average, the GA is capable of
finding optimal value of the fitness function. This means
that Tanager generates stable and feasible levels with a
desired amount of blocks and birds.

The second experiment measures the expressivity of
Tanager as a level generator. Three metrics of the litera-
ture were used to represent the features of the levels: fre-
quency, linearity and density. This experiment generated
500 levels among 5 different configurations (100 levels
each) and analyzed their distribution based on those
metrics. It was possible to conclude that the frequency of
pigs is not directly affected by variations in the input of
the algorithm. Regarding the frequency of birds, levels
are likely to have between 2 and 5 birds. Such results
confirmed the hypothesis that levels with more blocks
need more birds to be finished. Values achieved for
linearity and density indicated that Tanager is biased to
distributes blocks among few stacks, instead of creating
more stacks with smaller heights. Another finding was
that increasing the amount of blocks directly increases
levels density, but slightly decreases their linearity.

The third set of experiments was intended to evaluate
immersion aspects of the generated levels, in comparison
with manually created levels adapted from the first
episode of the original game. Two groups of levels were
played by 139 participants and they answered question-
naires about immersion and similarity of the groups.
Results suggested that the engagement and enjoyment
of the groups were similar, while the original levels were
more challenging. The participants also found the objects
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arrangement of the two groups to be different. Moreover,
previous experience of players in general games did not
affect directly their answers on such evaluation.

All the results showed the Tanager is an approach
capable of generating relevant levels for the first episode
of the Angry Birds game. The structure and style of
these levels are quite simple compared to more advanced
episodes. Therefore, one of the future works of this
project is to improve the level representation aiming
to support more complex levels. The current intelligent
agent used to evaluate levels applies a simple strategy,
but such strategy has a relevant impact over feasibility
evaluation. Thus, defining a better strategy is another
future work that may improve the quality of the levels
generated. Finally, both stability and feasibility are be-
ing evaluated by a single polynomial fitness function.
Separating these two aspects in different objectives is an
improvement in the genetic algorithm itself, making it a
multi-objective approach [23], which may help to explore
better the search space.

APPENDIX A
QUESTIONNAIRES USED TO EVALUATE IMMERSION AND

SIMILARITY

Immersion Questionnaire
1) To what extent did these levels hold your atten-

tion?
Not at All 1 2 3 4 5 A lot

2) To what extent did you lose track of time?
Not at All 1 2 3 4 5 A lot

3) To what extent did you find these levels challeng-
ing?
Not at All 1 2 3 4 5 A lot

4) Were there any times during these levels in which
you just wanted to give up?
Not at All 1 2 3 4 5 A lot

5) How much would you say you enjoyed playing
these levels?
Not at All 1 2 3 4 5 A lot

6) Would you like to play these levels again?
Definitely not 1 2 3 4 5 Definitely yes

Similarity Questionnaire
1) To what extent do you think the levels from the

Group B were generated by the computer?
Not at All 1 2 3 4 5 A lot

2) To what extent the levels from Group B were
similar to those from Group A?
Not at All 1 2 3 4 5 A lot

REFERENCES

[1] N. Shaker, J. Togelius, and M. Nelson, “Procedural content gen-
eration in games,” 2014.

[2] J. R. Mariño and L. H. Lelis, “A computational model based
on symmetry for generating visually pleasing maps of platform
games,” in Twelfth Artificial Intelligence and Interactive Digital En-
tertainment Conference, 2016.

[3] A. Liapis, G. N. Yannakakis, and J. Togelius, “Sentient sketchbook:
Computer-aided game level authoring.” in FDG, 2013, pp. 213–
220.

[4] P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps for match
balancing in first person shooters,” in Computational Intelligence
and Games (CIG), 2014 IEEE Conference on. IEEE, 2014, pp. 1–8.

[5] L. Cardamone, P. L. Lanzi, and D. Loiacono, “Trackgen: An
interactive track generator for torcs and speed-dreams,” Applied
Soft Computing, vol. 28, pp. 550–558, 2015.

[6] R. van der Linden, R. Lopes, and R. Bidarra, “Procedural genera-
tion of dungeons,” IEEE Transactions on Computational Intelligence
and AI in Games, vol. 6, no. 1, pp. 78–89, 2014.

[7] Q. Xu, J. Tremblay, and C. Verbrugge, “Generative methods for
guard and camera placement in stealth games.” in AIIDE, 2014.

[8] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,”
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 3, no. 3, pp. 172–186, Sept 2011.

[9] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario
ai competition,” in Evolutionary Computation (CEC), 2010 IEEE
Congress on. IEEE, 2010, pp. 1–8.

[10] L. Ferreira and C. Toledo, “A search-based approach for generat-
ing angry birds levels,” in Proceedings of the 9th IEEE International
Conference on Computational Intelligence in Games, ser. CIG’14, 2014.

[11] M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas, “Procedural
generation of angry birds levels with adjustable difficulty,” in
Evolutionary Computation (CEC), 2016 IEEE Congress on. IEEE,
2016, pp. 1311–1316.

[12] M. Stephenson and J. Renz, “Procedural generation of levels for
angry birds style physics games,” in The AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2016.

[13] R. Entertainment. (2010) Angry birds. [Online]. Available:
http://www.angrybirds.com

[14] L. Ferreira and C. Toledo, “Generating levels for physics-based
puzzle games with estimation of distribution algorithms,” in
Proceedings of the 11th International Conference on Advances in
Computer Entertainment, ser. ACE’14, 2014. [Online]. Available:
http://www.lucasnferreira.com/papers/2014/ace-edaab.pdf

[15] L. Pereira, L. Ferreira, L. Lelis, and C. Toledo, “Learning
to speed up evolutionary content generation in physics-
based puzzle games,” in Proceedings of the IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), ser.
ICTAI’16, 2016. [Online]. Available: http://www.lucasnferreira.
com/papers/2016/ictai-learning.pdf

[16] M. Shaker, M. H. Sarhan, O. Al Naameh, N. Shaker, and J. To-
gelius, “Automatic generation and analysis of physics-based puz-
zle games,” in Computational Intelligence in Games (CIG), 2013 IEEE
Conference on. IEEE, 2013, pp. 1–8.

[17] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content
for cut the rope through a simulation-based approach.” in AIIDE,
2013.

[18] P. Zhang, J. Renz et al., “Qualitative spatial representation and
reasoning in angry birds: The extended rectangle algebra.” in KR,
2014.

[19] J. Wang, P. Rogers, L. Parker, D. Brooks, and M. Stilman, “Robot
jenga: Autonomous and strategic block extraction,” in Intelligent
Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Con-
ference on, Oct 2009, pp. 5248–5253.

[20] A. Di Pietro, L. While, and L. Barone, “Applying evolutionary
algorithms to problems with noisy, time-consuming fitness func-
tions,” in Evolutionary Computation, 2004. CEC2004. Congress on,
vol. 2, June 2004, pp. 1254–1261 Vol.2.

[21] G. Smith and J. Whitehead, “Analyzing the expressive range of a
level generator,” in Proceedings of the 2010 Workshop on Procedural
Content Generation in Games. ACM, 2010, pp. 4:1–4:7.

[22] C. Jennett, A. L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, and
A. Walton, “Measuring and defining the experience of immersion
in games,” Int. J. Hum.-Comput. Stud., vol. 66, no. 9, pp. 641–661,
sep 2008.

[23] K. Deb, Multi-objective Optimisation Using Evolutionary Algorithms:
An Introduction. London: Springer London, 2011, pp. 3–34. [On-
line]. Available: http://dx.doi.org/10.1007/978-0-85729-652-8 1


