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ABSTRACT
This paper presents an estimation of distribution algorithm
(EDA) to generate levels for physics-based puzzle games with
the Angry Birds mechanics. The proposed EDA keeps three
probability tables during its evolutionary process to sample
new individuals that encode informations about the amount
and placement of game objects inside the level. Sampled in-
dividuals are evaluated by a simulation-based fitness function,
which considers the stability and the amount of the game ob-
jects inserted in a level. The best individual sampled from the
probability tables is used to update them. Experiments indi-
cated that the proposed EDA was capable of creating stable
structures related to the Angry Bird gameplay.
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INTRODUCTION
Level generation is one of the most common types of proce-
dural content generation (PCG) inside digital games [6]. The
authors in [13] report several games using PCG either to allow
a unique gameplay experience or to generate a huge amount
of levels without actually store them in memory. For exam-
ple, the dungeons in the classic game Rogue are generated
dynamically every time a new game starts [8].

Besides being used in the game industry, procedural level
generation (PLG) has been studied by several authors in the
research community. Recently, there are a plenty of papers
reporting the use of evolutionary algorithms for PLG in dif-
ferent game genres. For example, [1] generated tracks for
racing games, [9] generated levels for platform games and
[14] generated maps for the real time strategy game Starcraft.

Although PLG is one of the most common types of PCG,
there are only a few works applying it to physics-based puzzle
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games [10, 11, 12]. This genre has recently become very pop-
ular, especially on mobile devices, and some of the main titles
are Angry Birds, Cut the Rope and Tower of Goo. It is an in-
teresting application for PCG, because it has several physics
constraints to be considered when evaluating the quality of
the content generated. Therefore, the playability evaluation
is another issue once it needs to be done with a physics simu-
lator [10].

This paper presents an estimation of distribution algorithm
(EDA) for generating Angry Birds levels. EDAs are stochas-
tic optimization techniques that explore the space of potential
solutions building and sampling explicit probabilistic models
of promising candidate solutions [5]. Its output is an estima-
tion of the probability distribution from good solutions, which
is typically represented by a probability array [7].

In EDAs for PCG, the probability array may represent the
likelihood of a feature to occur inside the content generated.
Thus, this approach may allow the user customizing the con-
tent generator, manually adjusting the values in the probabil-
ity array to sample content with different characteristics. To
the best of the authors’ knowledge, there is no application of
EDAs inside the PCG field. Therefore, this is the major con-
tributions of this paper.

Angry Birds is a popular commercial physics-based puzzle
game developed by Rovio Entertainment and released in 2009
for iOS devices [3]. This game has been a huge success,
reaching the mark of 1 billion downloads in 2012 [4]. Thus, it
was used to support the experiments in this paper. However,
its source code is not available, so we implemented a clone
1 using Unity engine [15] and the original art assets. The
experiments performed used metrics such as frequency, lin-
earity and density to analyze the expressivity of the proposed
algorithm. Results showed the proposed EDA can generate
interesting stable structures in the levels.

THE ESTIMATION OF DISTRIBUTION ALGORITHM
Proposed EDA samples l individuals from a probability dis-
tribution represented by three tables, where l is a parameter
of the algorithm. These l individuals are evaluated using the
developed Angry Birds clone and the best one is used to up-
date all the tables, which will sample l new individuals in the
next iteration. First probability table has the likelihood of an
object to occur in each sector of the level. Second table has
the likelihood of the amount of objects stacked in a column.

1https://github.com/lucasnfe/AngryBirdsCover
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Third table stores the probability of horizontal distance be-
tween two columns to belong a determined range of values.
The evolutionary process, described in the Algorithm 1, is
executed until a number of generations have been reached.

Algorithm 1: The proposed EDA
1 currentGeneration← 0;

2 InitializeProbabilityTables();

3 while currentGeneration < maxGeneration do
4 SampleIndividuals();
5 EvaluateIndividuals();
6 bestInd← SelectBestIndividual();

7 UpdateProbabilityTables(bestInd);

8 currentGeneration← currentGeneration+ 1;
9 end while

The initialization stage (line 2) set all probability tables to
represent a uniform distribution. While the maximum number
of generations is not exceeded (lines 3), a number l of indi-
viduals are sampled using current probability tables (line 4).
During the evaluation stage (lines 5), individuals are played
using the Angry Bird clone. Physics information collected
during the game is used by the fitness function to evaluate the
l individuals. The best individual is selected (line 6) and used
to update probability tables (lines 8).

Level Representation
An individual in the proposed algorithm represents an Angry
Birds level encoded as an array of columns. Its size c is an
user-defined parameter and it is the total amount of columns
in the level. Each column is composed by zero or more game
objects stacked, which are represented by integer values.

Figure 1. The 22 elements used to build levels.

There are three possible objects: an elementary block, a pig or
a composed block. A composed block is a predefined struc-
ture made by elementary blocks. A total of 22 game objects
are used to build levels as showed in Figure 1. Objects 17-21
are composed blocks, object 22 is the pig and the others are
elementary blocks.

Horizontal distance between each column is also encoded in
the individual and it is represented by an array with size c−1.
An element dmin ≤ di ≤ dmax of this array stands for the
horizontal distance (in pixels) from the center of the column
i to the center of the column i+1. Figure 2 illustrates a level
and its representation.

Figure 2. Individual representing a level an its expanded format.

Probability Tables
Proposed EDA uses three tables to represent the levels’ prob-
ability distribution. First table represents the likelihood of a
game object being placed in each sector of the level: ground,
middle and top. It is used to control which objects will be
placed in each sector of the level and it is useful for preventing
unstable objects being placed in the ground or middle sectors.

Game Obj. Ground Middle Top
1 0.03 0.3 0
2 0 0 0.02
3 0.17 0.1 0
4 0 0 0
5 0 0 0.18
6 0 0 0
7 0 0 0.1
8 0.05 0.12 0
9 0.05 0.18 0

10 0 0 0.05
11 0 0 0.15
12 0.1 0.2 0
13 0.1 0 0
14 0.1 0.1 0
15 0 0 0.1
16 0 0 0.1
17 0.1 0 0
18 0.1 0 0
19 0.1 0 0
20 0.08 0 0
21 0.02 0 0
22 0 0 0.3

Table 1. Example of a game objects’ probability table.

First column represents the index i of the game objects. Sec-
ond, third and fourth columns represent the probability of ob-
ject i being placed in the first position (ground sector), inter-
mediary position (middle sector) and in the last position (top
sector) of a column, respectively. Note that the sum of each
column must be one. Table 1 illustrates an example of game
objects’ probability table.

Second table represents the likelihood of amount of objects
stacked in columns of the level. Its dimension is c ∗ (hmax +
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1), where c is the number of columns in the level and hmax

is the maximum amount of objects in a column. (both values
are parameters of the algorithm). An element ei,j in this table
represents the probability of the amount j of objects stacked
in the column i. Table 2 shows an example considering c = 5
and hmax = 2.

Objs. stacked Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
2 0.4 0.2 0 0 0.7
1 0.4 0.6 0.1 0 0.2
0 0.2 0.2 0.9 1.0 0.1

Table 2. Example of a probability table for objects stacked.

Third table represents the probability distribution of hori-
zontal distances between columns. Distances between two
columns are values inside the interval (dmin, dmax), which
are method parameters. This table stores the likelihood of
ranges that belong to (dmin, dmax). Range sizes are defined
as (dmax − dmin)/r, where r is a parameter that controls
the size of ranges. Table 3 illustrates an example considering
c = 5, dmin = 0, dmax = 80 and r = 4.

Dist. 1-2 2-3 3-4 4-5
[60,80] 0.25 0.0 0.1 0.2
[40,60) 0.25 0.0 0.0 0.4
[20,40) 0.25 0.5 0.1 0.2
[0,20) 0.25 0.5 0.8 1.2

Table 3. Example of a probability table for horizontal distances.

Sampling and Evaluating Levels
Levels are sampled column by column based on the three
probability tables described in the last section. First, the
amount of objects hi for column i is randomly sampled con-
sidering probabilities in column i of the second table. If
i < c− 1, the distance di,i+1 from column i to column i+ 1
is randomly sampled considering probabilities in column i of
the third table.

After defining the amount of objects stacked (hi) for column
i and the distance from column i to column i+1, all the game
objects of column i of the level are randomly sampled using
the probabilities in column j of the first table. Value j defines
the sector of the current object: j = 0 is the ground sector,
1 ≤ j ≤ hi − 1 is the middle sector and j = hi is the top
sector. Algorithm 2 describes this process.

During the evaluation stage of the proposed algorithm, the
l sampled individuals are evaluated by a fitness function (1)
that considers the average velocity of objects during the game
and the total amount of blocks and pigs.

find =
1

n

n−1∑
i=0

vi +

√
(|b| −B)2

Maxb −B
+

1

1 + |p|
(1)

In fitness function (1), 0 ≤ vi ≤ 1 is the average velocity
of object i during the game, n is the total amount of objects
(blocks and pigs), |b| is the amount of blocks and |p| is the
amount of pigs. Parameter B defines the desired amount of
blocks and it is set by the user. Maxb is the maximum amount

Algorithm 2: Sampling new levels.
1 i← 0;

2 while i < c do
3 hi ← SampleColumnHeight(i);

4 if i < c− 1 then
5 level.distances[i]← SampleColumnWidth(i);
6 end if
7 j ← 0;

8 while j < hi do
9 level.objects[i][j]← SampleGameObject(j, hi);

10 j ← j + 1;
11 end while
12 i← i+ 1;
13 end while

of objects in a level and it is determined by the number of
columns c and maximum amount of objects staked hmax.

First term of equation (1) evaluates the stability of the objects
in the level through their average velocity during the game.
It is influenced by all the probability tables, the first one is
responsible for the arrangement of objects in columns, so it
can reduce their velocity by placing them in a configuration
that does not fall. Second table defines the total amount n of
objects in the level, which is used to calculate their average
velocity. Third table defines the distance between columns,
so as the further away they are from each other, the amount
of collision between their objects during the game is reduced,
which consequently reduces their average velocity.

Second term is the normalized distance between the desired
amount of objects B and the total amount of objects |b| in
the level. Third term is a function to force the creation of
at least one pig. These two terms are influenced by the first
and second tables, because they define the total amount of
blocks and pigs. Proposed algorithm searches for levels that
minimize this fitness function, i.e. levels with fitness approx-
imately zero. It happens when the level has exactly B blocks,
more than one pig and all the objects do not move during the
game.

Updating Probability Tables
After evaluating all the sampled levels, the proposed algo-
rithm selects the best of them to update the three probability
tables. First table is updated based on the objects frequency
in each sector of the best level. For example, considering the
level in Figure 2, the ground sector of Table 1 is updated as
showed in Figure 3. Lines 19 and 21 were updated with 2

3 ∗
1
n

and 1
3 ∗

1
n because only objects 19 and 21 were sampled in

this sector and their frequencies are 2
3 and 1

3 , respectively.
The value n is a parameter of the algorithm to control the
update factor in the tables.

Once the sum of all the probabilities in a column of this ta-
ble must be one, every time a sector is entirely updated, all
the non updated objects in this sector have their probability
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table1[19][0] = table1[19][0] +
2

3
∗ 1

n

table1[21][0] = table1[21][0] +
1

3
∗ 1

n

Figure 3. Updating ground sector of Table 1.

equally reduced. For example, after updating lines 19 and 21
in Figure 3, the other probabilities are reduced by 1

n ∗
1
20 .

Second table is updated column by column considering the
amount of stacked objects in columns of the best individ-
ual. This process is showed in Algorithm 3. Line 3 gets the
amount of stacked objects in current column i of the best level
and line 4 adds 1

n to this probability in the column i of the
second table. The sum of columns of this table also must re-
sult in one, so lines 5-12 reduce the probability of unchanged
lines to fix this sum.

Algorithm 3: Updating probability table for objects stacked.
1 i← 0;

2 while i < c do
3 h← bestLevel.objects[i].size();
4 table2[h][i]← table2[h][i] + 1

n ;

5 prodToReduce← 1
n ∗

1
c−1

6 j ← 0

7 while j < c do
8 if i 6= j then
9 table2[j][i]← table2[j][i]− prodToReduce;

10 end if
11 j ← j + 1;
12 end while
13 i← i+ 1;
14 end while

Last table is updated using a similar approach as the one de-
scribed in Algorithm 3. However, in this case it increases the
probability of widths’ range which appeared in the best level.
Instead of getting the amount of objects stacked in a column
i (line 3), it gets the horizontal distance from the column i to
the column i + 1. Then, this distance is divided into a range
which has the probability updated in the table. If any prob-
ability becomes bigger than one when updating tables, it is
adjusted to one. In the same way, if any probability becomes
smaller than zero, it is adjusted to zero.

EXPERIMENTS AND RESULTS
Experiments were conducted aiming to indicate the strengths
and weaknesses of proposed EDA by analysing its expressiv-
ity, i.e. the space of all levels that it can create [10]. It is done
using three metrics based on those proposed in [6] and [10]:
frequency, linearity and density. Frequency is the number of
a specific game object in the generated level. Linearity is the

average amount of objects stacked in columns within the level
and density is the sparseness of the columns through the level
[2].

Experiments were performed taking into account three differ-
ent values for parameter n: 10, 100 and 1000. It acts like an
update factor for the probability tables and it influences the
convergence of values in probability tables. For each value
of n, the algorithm was executed 200 times. After the end of
each execution, the three probability tables were used to sam-
ple only one level, which was evaluated in terms of frequency,
linearity and density.

Levels were generated with B = 15 blocks, c = 5 columns
and maximum amount of objects stacked hmax = 10. Mini-
mum and maximum horizontal distances are dmim = 20 and
dmax = 100. Distance range r was set to 10, so the horizontal
distance table has (100− 20)/8 = 10 ranges. The amount of
sampled levels in each generation of the proposed EDA was
200 and the maximum number of generations is 1000. The
execution time for each level was set to 0.08 seconds. These
parameters were empirically determined based on some pre-
vious computational tests.

Frequency
First experiment evaluates the relative frequency of game ob-
jects in the ground sector for the three different values of n
considered. The results of this experiment are illustrated in
Figure 4. Considering n = 10, the game object 1 has a proba-
bility larger than 50% of appearing in the ground sector. This
object has a square shape, which provides sustainability for
the columns. The other two objects with higher probabilities
are object 13 and 9. They have rectangular shapes, so they are
also safe objects to be used in the ground. Other objects have
probabilities lesser than 0.1. Figure 4 also shows composed
blocks and pigs have probability zero.

Figure 4. The game objects average frequency in the ground sector for
the three different values of n.

Considering n = 100, the proposed algorithm gave a proba-
bility around 0.1 for objects 3, 9, 12, 13, 14, 17, 18 and 19.
It also avoided using in the ground sector other objects that
can affect the columns’ stability, such as objects 5, 6, 7 and
10. For n = 1000, most objects have probability around 0.05.
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However, the object 14 has almost probability zero and object
18 has almost probability one.

Figure 5 shows game objects relative frequency in the mid-
dle sector for the three different values of n analyzed. In this
case, the most used game objects are objects 2, 8, 9 and 12
for n = 10. The first one has a square shape and the others
have a rectangular shape, so they can be safely placed in the
middle sector. Once the pig has a circular shape, its proba-
bility in the middle sector is zero too. With n = 10, neither
composed objects or pigs are used in the middle sector. Most
game objects used in the middle sector, for n = 100, are the
objects 1, 2, 8, 9, 14 and 15. All objects have the probability
around 0.5 considering n = 1000.

Figure 5. The game objects average frequency in the middle sector for
the three different values of n.

Last experiment evaluates the relative frequency of game ob-
jects in the top sector and its results are reported in Figure 6.
For n = 10, it shows almost 65% of the sampled object are
from type 1. However, there is a probability around 0.1 for
objects 6, 7, 8, 13, 16 and 18. For this value of n, the algo-
rithm does not use pigs in the top sector when it is generating
levels. On the other hand, for n = 100 the pig object has
almost 50% of probability of being placed in the top sector.
Nevertheless, objects 7, 10, 11, 15 and 16 have a probability
around 0.1. Figure 6 shows the probability of all the blocks
is around 0.05 again for n = 1000, but only objects 8 and 12
have almost probability zero and the object 9 has probability
around 0.1.

Density and Linearity
Frequency only evaluates which game objects were used
more through levels, while linearity and density give an idea
about the orientation of the game objects. As explained
before, linearity l measures the average amount of objects
stacked in columns of a level and density 0 ≤ d ≤ 1 evalu-
ates columns sparseness based on the distance between them.
A low density indicates the columns are very separated and a
high density indicates they are very close to each other. Table
4 compares these metrics for the three values of n analyzed.
The average (µ) and the standard deviation (σ) values for the
best 200 levels generated are depicted.

n Linearity (µ|σ) Density
10 3.1937|1.3404 0.5301
100 3.0355|1.5020 0.5126

1000 1.9581|4.6855 0.9789
Table 4. The Linearity and Density when n is 10, 100 and 1000.

Linearity average and standard deviation for n = 10 and
n = 100 are similar. Thus, both settings generate levels with
approximately 3 objects stacked in columns. Standard devi-
ations are both around 1.5, so there are no large variations
in the amount of objects stacked in columns. Since the de-
sired amount of blocks is B = 15 blocks and the number of
columns is c = 5, all columns in the levels will have at least
two blocks. Linearity average is 1.9581 for n = 1000 , but
its standard deviation has a considerable variation with more
chance for empty columns.

In the first and second experiments, densities were around 0.5
which means columns disposed through the entire level with-
out large distances between them. For n = 1000, the density
is almost one meaning that columns are very close to each
other. This proximity can lead to several column structures to
fall down when some of them are unstable.

Figure 6. The game objects average frequency in the top sector for the
three different values of n.

Generated Levels
Results achieved for n = 10 give high probabilities for a few
sets of square and rectangular objects. Considering update
factor n = 10, the proposed method did not explore well all
the objects, because it used only objects 1, 2, 9, 12 and 13 and
it did not use any composed block. Also, the main problem
of using n = 10 is that pigs are not sampled which turns the
levels unplayable.

Proposed EDA did not explore well the objects probability
when n = 1000. In the experiments, most objects had a prob-
ability around 0.05 independently of the sector. This large
value for n becomes small the impact of the update factor
through the generations of the algorithm. Thus, the probabil-
ity estimation process is too slow for this case.

Regarding frequency, linearity and density, the best evaluated
value for n is 100. The proposed algorithm used the whole
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variety of objects in the three sectors of the level. It is im-
portant to highlight that the update factor n = 100 used more
composed blocks and gave a high probability for pigs in the
top of levels. Figure 7 shows an example of level generate
with this setting. It meets the restriction of 15 blocks and it
has two pigs, one at the top of the third column and another
one in the last column.

Figure 7. Example of a level generated with n = 100

CONCLUSION
This paper presented an evolutionary approach for generating
levels in physics-based puzzle games with the Angry Birds
mechanics. The proposed algorithm is based on an estima-
tion of distribution algorithm (EDA) and it uses three proba-
bility tables to sample levels during its generations. The best
level of the sampled ones is used to update the tables, which
represent the probability distribution of good solutions. The
fitness function considers the average velocity of the game
objects during a simulation of the level. The total amount of
blocks and pigs is also considered to evaluate a level.

Proposed algorithm was evaluated in terms of its expressiv-
ity. We defined three metrics to evaluate the generated levels:
frequency, linearity and density. We analyzed this metrics
considering the different values for the parameter n of the al-
gorithm: 10, 100 and 1000. This parameter represents the
update factor during the algorithm generations.

Expressivity analysis indicated the block types used in a level
and the orientation of them. Results showed 100 as the best
configuration for n, because it balanced well the block types
used through the levels and it was the only setting that had a
big probability for pigs on the top sector of the level. Con-
sidering n = 100, the algorithm creates levels structures with
similar amount of objects stacked, indicating a small variation
in the arrangement of structures.
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