
A Search-based Approach for Generating
Angry Birds Levels.

Lucas Ferreira
Institute of Mathematics and Computer Science

University of São Paulo
São Carlos, Brazil

Email: lucasnfe@icmc.usp.br

Claudio Toledo
Institute of Mathematics and Computer Science

University of São Paulo
São Carlos, Brazil

Email: claudio@icmc.usp.br

Abstract—This paper presents a genetic algorithm (GA) for
the procedural generation of levels in the Angry Birds game. The
GA evaluates the levels based on a simulation which measures
the elements’ movement during a period of time. The algorithm’s
objective is to minimize this metric to generate stable structures.
The level evaluation also considers some restrictions, leading the
levels to have certain characteristics. Since there is no open
source code of the game, a game clone has been developed
independently of our algorithm. This implementation can be used
to support experiments with procedural content generation (PCG)
methods for this game type. We performed experiments in order
to evaluate the expressivity of the level generator and the results
showed that the proposed algorithm could generate levels with
interesting stable structures.

I. INTRODUCTION

Content creation is one of the major efforts of digital games
industry [1]. The authors in [2] define game content as all
aspects of the game that affect gameplay other than non-player
characters (NPCs). Examples of game content are terrains,
maps, levels, stories, dialogue, quests, characters, rulesets,
weapons, etc.

Since games have become complex and bigger, generating
content may demand plenty of time from game developers.
Therefore, procedural content generation (PCG) can be used
to reduce the content generation time. PCG is the automatic
or semi-automatic generation of content by algorithms [3]. For
example, PCG was used in the development of the Borderlands
[4] game for generation of a large set of different weapons.
PCG algorithms represent a content usually as parameters or
seeds [2] and, besides reducing the time spent for content
generation, they can also reduce memory consumption and
support personalized contents in games [3].

Memory consumption can be reduced when PCG is used
online. Once content is generated inside the game, there is
no need to store it in the memory before its generation [5].
For example, Elite [6] is a game which managed to generate
information about hundreds of star systems, spending few tens
of kilobytes of memory. Personalized content can be created
from algorithms classified as experience driven procedural
content generation [7]. In this case, algorithms usually learn
a player’s experience model, which is used to predict aspects
such as challenge, frustration, fun, etc.

PCG can be treated as an optimization problem [2]. In this
case, a search space is defined to represent candidate contents

for a given context of the game and the proposed algorithms
must search for the best one. Such algorithms are classified as
Search Based Procedural Content Generation (SBPCG) [2].

Although many methods are based on evolutionary algo-
rithms, SBCPG includes all forms of heuristics and stochas-
tic search/optimization algorithms [2]. It has been used for
generating many types of game content including levels [8],
weapons[9], spaceships [10] and rulesets [11]. Level genera-
tion is currently one of the most popular types of PCG [2].
Levels have been generated for different genres of games, such
as racing games [12], arcade [13] and platform [14], all based
on evolutionary algorithms.

Physics-based puzzle games has recently become very pop-
ular, especially in mobile devices. Some of the most popular
titles are Angry Birds, Bad Piggies, Tower of Goo and Cut
the Rope. Despite their popularity, to the best of the authors’
knowledge, this genre has not been deeply explored in the
field of PCG. There are only a few studies devoted to content
generation for the Cut the Rope game [15], [16], [17].

This genre is an interesting application for PCG, because
it has several physics constraints, which must be considered
in the evaluation of the quality of the generated content.
Evaluating playability is another issue in this genre since this
needs to be done based on a physics simulator [15].

This paper presents a level generator for the Angry Birds
game based on an evolutionary algorithm which represents a
level with an array of columns. The fitness function evaluates
a level based on a simulation that measures how much each
object has moved. The objective of the algorithm is to mini-
mize the total amount of movement during the simulation so
as to create structures which do not fall.

Several experiments focusing on the analysis of the level
generator expressivity were conducted, aiming at the evalua-
tion of its capabilities and the content space explored. Metrics,
such as frequency, linearity and density were used to show the
characteristics of the generated content.

The remainder of the paper is organized as follows: Sec-
tion II describes the Angry Birds game and provides details
about its clone implemented to run the simulations; Section
III describes the evolutionary algorithm, including the level
representation, the fitness function and the genetic operators;
Section IV adresses the experiments and the results including

the levels generated; finally, Section V concludes this work
and presents its next steps.

II. ANGRY BIRDS

Angry birds gameplay consists in using a slingshot to throw
birds against structures composed of blocks and pigs, where
the objective is to kill all the pigs. Player has a limited amount
of birds to kill a certain amount of pigs. An Angry Birds level,
as showed in Figure 1, is composed of birds, pigs, blocks and
a slingshot, all inserted in a specific scenario, usually over a
flat terrain. The game is divided by “worlds”, each one with a
specific theme. Levels usually contain structures with shapes
related to these themes, which makes the player feel inside
these worlds.

Fig. 1. Screenshot taken from the Angry Birds game.

Blocks are used to create different gameplay once they can
either sustain or defend pigs. Pigs in each level should be set
in a configuration so that the player can kill them using the
provided birds. Player must use the blocks and the physics
characteristics to kill all the pigs. The distance between the
slingshot and the beginning of the blocks also influence the
gameplay, because it affects the force and the angle that the
player must use to throw each bird and kill the pigs.

A. Angry Birds Clone

Angry Birds is a private project developed by Rovio Entre-
tainment [18] and there is no open source code available for
the game. Thus, our own clone were implemented using the
Unity engine [19] and the original art assets. Its source code
is available for download via GitHub 1.

In our clone, levels are described by an xml file used as
the input of the game. This xml may describes one or more
levels, when more than one level is described, they will be
played in order. The description contains the attributes of the
level simulation and the positions of all the game objects (pigs,
birds and blocks).

Each level played is treated as a simulation, which may
have a time limit. Levels in the original game do not have any
time limit, but this feature is important for us, since we need to
play and to analyze several levels in a batch. A simulation ends
either when time is over or if player wins/looses the game. The
elements of the xml and their attributes are the following:

1https://github.com/lucasnfe/AngryBirdsCover

• Levels: a list of levels which will be played in order.

• AngryBirdsLevel: an instance of a level.

• Simulation: the information to run the level inside the
game.
◦ time: a real number representing the amount

of time (in seconds) spent by the simulation.
This attribute must have a negative number to
disable the time limit.

◦ timeScale: a real number representing the
scale of time. It can be used to run the simu-
lation slower or faster.

◦ enableInput: a boolean value to be set if the
user’s input is allowed.

• Slingshot: the position of the slingshot in the level.

• Birds: a list of birds which will be placed in the
level. Currently the game supports only the red birds
(showed in the Figure 2)
◦ isMainBird: A boolean value to be set if the

bird can be dragged by the player.
◦ x: An integer number representing the x coor-

dinate in the screen (with origin in the bottom
left corner).

◦ y: An integer number representing the y coor-
dinate in the screen (with origin in the bottom
left corner).

◦ rotation: A real number representing the rota-
tion in degrees.

• Pigs: a list of pigs which will be placed in the level.

• Blocks: a list of blocks which will be placed in the
level. The blocks have the same orientation attributes
of the birds (x, y and rotation).
◦ n: An integer number representing the type of

the block.

An example of level description xml is showed in Figure
2. In this example, the level will end after 100 seconds and it
will be played in the normal velocity because it’s timeScale is
equal to 1. It allows input from the user because enableInput
is set to true. The other elements in the xml describe the type,
position, and rotation of each object in the level.

After the simulation of each level described in the xml,
the game creates another xml as output which contains sim-
ulation’s results of each level. It also contains the following
information for each block:

1) averageVelocity: average magnitude of the velocity
vector during the simulation. It is calculated by
collecting the velocity vector magnitude after each
0.1 second of simulation.

2) collisions: the object’s collision amount in the end of
the simulation.

3) rotation: the object’s rotation at the end of the
simulation.

Figure 3 illustrates an example of output xml generated
playing the level showed in Figure 2. The velocity of all the
blocks is on average lower than 0.4 and they all ended the
simulation with 2 collisions. The three pigs placed in the level

<Levels>
<AngryBirdsLevel>

<Simulation time="100" timeScale="1" enableInput="true"/>
<Slingshot x="150" y="160"/>
<Birds>

<bird isMainBird="true" n="2" x="140" y="210" rotation="0.0" />
<bird isMainBird="false" n="2" x="200" y="100" rotation="0.0"/>
<bird isMainBird="false" n="2" x="260" y="100" rotation="0.0"/>

</Birds>
<Pigs>

<pig x="646" y="314" rotation="0.0"/>
<pig x="1056" y="375" rotation="0.0"/>
<pig x="1496" y="316" rotation="0.0"/>

</Pigs>
<Blocks>

<block n="13" x="646" y="200" rotation="0.0"/>
<block n="7" x="646" y="218" rotation="0.0"/>
<block n="11" x="646" y="257" rotation="0.0"/>
<block n="8" x="646" y="275" rotation="0.0"/>
<block n="11" x="1056" y="200" rotation="0.0"/>
<block n="2" x="1056" y="218" rotation="0.0"/>
<block n="8" x="1056" y="297" rotation="0.0"/>
<block n="7" x="1056" y="336" rotation="0.0"/>
<block n="11" x="1496" y="200" rotation="0.0"/>
<block n="12" x="1496" y="218" rotation="0.0"/>
<block n="7" x="1496" y="238" rotation="0.0"/>
<block n="8" x="1496" y="277" rotation="0.0"/>

</Blocks>
</AngryBirdsLevel>

</Levels>

Fig. 2. Example of a level description xml.

had only one collision each. The rotation of the blocks did not
change so much, because they were created with rotation zero
and ended the simulation with a rotation very close to zero.

The output xml can be used for level generators to evaluate
the content created. Currently only those three attributes are
measured and given as the simulation result, but more infor-
mation can be collected from the simulation so as to support
different evaluations functions for content generators. The use
of xml files as input and output enables the reuse of this clone
with other level generators.

III. THE GENETIC ALGORITHM

The proposed level generator is based on a genetic al-
gorithm (GA) and uses the Angry Birds clone during its
evaluation stage. First, it initializes a population randomly by
generating a bunch of levels represented as individuals in this
GA. These individuals are evolved by genetic operators such as
selection, crossover and mutation. This evolutionary process is
executed until either a number of generations has been reached
or the fitness of the best individual has not increased after 10
generations (stopping criteria).

Algorithm 1 describes the proposed GA. During the evalu-
ation stage (lines 3 and 9), the current population is coded into
the level description xml and the whole population is evaluated
in a batch. After all simulations have been execute, the output
file with the simulations results is read. This information is
used by the fitness function to evaluate the individuals.

<Game>
<GameData>

<Blocks>
<Block averageVelocity="0.2314583" collisions="2" rotation="0.0001772343"/>
<Block averageVelocity="0.2445948" collisions="2" rotation="-0.0001241715"/>
<Block averageVelocity="0.3542117" collisions="2" rotation="0.0004018355"/>
<Block averageVelocity="0.2630346" collisions="2" rotation="0.00134291"/>
<Block averageVelocity="0.2937365" collisions="2" rotation="-0.000159652"/>
<Block averageVelocity="0.3111888" collisions="2" rotation="0.0001218932"/>
<Block averageVelocity="0.3051278" collisions="2" rotation="0.0008152403"/>
<Block averageVelocity="0.2884055" collisions="2" rotation="-0.0002017251"/>
<Block averageVelocity="0.2023952" collisions="2" rotation="8.182239E-05"/>
<Block averageVelocity="0.2266041" collisions="2" rotation="0.00027917"/>
<Block averageVelocity="0.2529024" collisions="2" rotation="0.0007869605"/>
<Block averageVelocity="0.2174615" collisions="2" rotation="7.038287E-05"/>

</Blocks>
<Pigs>

<Pig averageVelocity="0.2946712" collisions="1"/>
<Pig averageVelocity="0.3599255" collisions="1"/>
<Pig averageVelocity="0.328222" collisions="1"/>

</Pigs>
</GameData>

</Game>

Fig. 3. Example of an output xml.

While either the stopping criterion is not satisfied or the
maximum number of generations is not exceeded (lines 4 and
5), genetic operators are applied to the current population
(lines 6-8). Parents are selected (line 6) for crossover using
tournament, defining a mating pool. A uniform crossover (line
7) and a mutation operator (line 8) are applied over individuals
in the mating pool. New individuals are evaluated (line 9) and
an elitism (line 10) is applied so that the better individuals
from the previous population are kept in the next one (line
11).

Algorithm 1: Evolutionary Algorithm structure
1 currentGeneration← 0;

2 InitPopulation(population);
3 EvaluatePopulation(population);

4 while !stoppingCriteria() and
5 currentGeneration < maxGeneration do
6 SelectPopulation(matingPool, population);

7 Crossover(matingPool);
8 Mutation(matingPool);

9 EvaluatePopulation(matingPool);
10 Elitism(matingPool, population) ;

11 population = matingPool;

12 currentGeneration← currentGeneration+ 1;
13 end while

A. Individual Representation

An individual in the proposed GA represents an Angry
Birds level encoded as an array of columns. Each element in a
column is an elementary block, a pig or a composed block. A
composed block is a predefined structure made by elementary
blocks.

The focus of this paper is on the generation of levels with
stable structures, therefore the algorithm will evaluate only the
quality of the generated structures. This means the distance
between the slingshot and the blocks structure will not be taken
into account by the individual representation. A total of 22
elements is used to build levels, as shown in Figure 4.

Fig. 4. The 22 elements used to build levels.

Each element is internally represented by an integer from
1 to 22. The elements 17-21 are composed blocks, the element
22 is the pig and the others are elementary blocks. Each
individual’s column corresponds to a column in the level,
therefore the order of elements in an individual’s column will
be the same order inside the level. Each individual’s column
also has an integer value associated to it, which stands for the
horizontal distance (in pixels) to the next column. This distance
is calculated from center of current column to center of the
next column. The last column will always have this distance
set to zero because there is no column after it. When placing
elements in the level, there is no vertical distance between
elements of same column.

Figure 5 illustrates a level representation with 3 columns.
Column 1 has size 3, Column 2 has size 6 and Column 3
has size 2. The horizontal distances between columns are
represented at the bottom of columns. The distance from
Column 1 to Column 2 is 148 pixels and from Column 2
to Column 3 is 183 pixels.

B. Initializing Population

In the initialization stage, the algorithm randomly generates
individuals to form the first population. However this process
is not uniformly random, because some elements affect the
columns stability if they are placed either in the first position
or in the middle positions of the column. We use a table to
define previously the probability of an element to be placed in
some position.

Table I is an example of a probability table. First column
represents the element index and second column represents the
probability of element i to be placed in the first position of
an individual column (over the level ground). Third column
represents the probability of element i to be placed in inter-
mediary positions of an individual column. Last column refers
to the probability of element i to be placed in the last position
of an individual column.

Values defined in the Table I give more chance to squared
blocks to be placed in initial and middle positions of the level.
The triangular and circular elements (including pigs) are more

7
9
8

22 1
Elements: 18 17 22

17 21 19

Distances: 148 183 0
Column81 Column82 Column83

Fig. 5. An individual representing a level an its expanded format.

likely to be placed at the top. It is important to highlight
that the sum of each column of the probability table must
be 1, because the initialization process performs an stochastic
selection.

TABLE I. EXAMPLE OF A PROBABILITY TABLE.

Element Ground Middle Top
1 0.1 0.2 0
2 0.1 0 0.1
3 0 0.2 0
4 0 0 0
5 0 0 0.1
6 0 0 0
7 0 0 0.1
8 0.05 0.15 0
9 0.05 0.15 0
10 0 0 0.1
11 0 0 0.1
12 0.1 0.1 0
13 0.1 0.1 0
14 0.1 0.1 0
15 0 0 0.1
16 0 0 0.1
17 0.1 0 0
18 0.1 0 0
19 0.1 0 0
20 0.05 0 0
21 0.05 0 0
22 0 0 0.3

C. Fitness Function

To evaluate the individuals, the algorithm must create a
level descriptor xml containing all the individuals from the
current population. The x coordinate of the blocks starts at the
center of the first column. The elements in the same column
have the same x coordinate, which are based on the distance

values associated with the columns. The y coordinate of an
element depends on the height of the elements under it.

After the input xml has been created, the algorithm must
execute the game with this xml as input. It runs all the
simulations and creates an output xml similar to the one
ilustrated in Figure 3. This file is parsed and the simulation
results are used to calculate the fitness function described by
equation (1).

find =
1

3
(
1

n

n−1∑
i=0

vi +

√
(|b| −B)2

Maxb −B
+

1

1 + |p|
) (1)

Value 0 ≤ vi ≤ 1 is the average magnitude of the velocity
vector of element i, n is the total number of elements (blocks
and pigs), |b| is the amount of blocks and |p| is the total of pigs
in the individual. Parameter B defines the desired amount of
blocks and it is set by the user. Maxb is the maximum amount
of elements that a level can have. This value is determined by
the maximum number of columns and lines that a level can
have. For example, considering the average velocities in the
Figure 3, B = 30 and Maxb = 70, the fitness function would
be calculated as following:

find =
1

3
(
3.19

15
+

√
(12− 30)2

70− 30
+

1

1 + 3
)

find =
1

3
(0.2126 + 0.36 + 0.25) = 0.2742

The proposed GA searches for levels with stable structures
that minimize this fitness function. First term of equation (1)
evaluates the stability of the structures through the magnitude
of the velocity vector. Second and third terms aims at the
creation of B blocks and at least one pig, respectively.

The minimum value of this function is approximately zero
and it is the case that all objects do not move during the
simulation, the individual has exactly B blocks and more than
one pig. In the other hand, the maximum value of this function
is 1, this is the case when all elements have maximum average
velocity, there are no pigs and the amount of blocks is equal
to Maxb −B.

D. Crossover and Mutation

The recombination process generates two new individuals
(children) by the application of an Uniform Crossover. Con-
sidering two individuals (parents) p1 and p2 with m and n
columns respectively, the column i ∈ [1,max(m,n)] of a
new individual (child) is generated by randomly selecting a
column either from p1 or p2 with equal probability. If the size
of the two individuals are different (m 6= n) and assuming
m > n, each of the m − n last columns from p1 will have
50% of chance to be included in the new individual. Otherwise
(n > m), each of the n −m last columns from p2 will have
50% of chance to be selected.

Figure 6 illustrates an example of a crossover operation.
First and second columns of Child 1 came from first and
second columns of Parent 2. Third column of Child 1 is

Fig. 6. Example of a crossover operation that generates two new individuals
from 2 parents.

selected from third column of Parent 2, while fourth column of
Child 1 is selected from fifth column of Parent 2. In this case,
the crossover randomly decided not to select fourth column
from Parent 2. Child 2 was created from the two first columns
of Parent 1 and third column of Parent 2.

A mutation may be applied over each new individual gener-
ated after crossover. Mutation randomly changes each element
of the individual with a certain probability. If the element
selected for mutation is not distance information, mutation
changes the type of this element by generating a new integer
value 1 ≤ r ≤ 22 based on the probability table. In this case,
the probability table is followed so as to avoid the insertion
of a wrong element into a determined column position. If
the element selected for mutation is distance information, the
mutation replaces it by a random integer within the possible
distance range. Figure 7 shows an example of mutation.

8 1
8 4 8 21
1 22 8 1 22 8

22 2 19 9 10 2 19 9

20 74 0 0 20 74 47 0

Fig. 7. Example of a mutation operation that generates one new individual
from 1 parent.

In this example the mutation changed the first element of
first column from 22 to 10 and last element of second column

from 8 to 1. The distance value in third column was mutated
from 0 to 47 and the last element of last column was changed
from 4 to 21.

IV. EXPERIMENTS AND RESULTS

Levels generated by the proposed GA were evaluated
through simulations with the game clone described in Section
II. An important parameter in the simulation is the time limit
assigned to each individual, once it directly affects the first
term of the proposed fitness function. A short simulation time
may not be sufficient to evaluate if objects will start to fall.
In this case, first term of equation (1) can be zero, but it does
not mean the elements of this individual are stable structures.
On the other hand, a long simulation time is not interesting
because, after a certain period, all the elements will be resting.
In this case, first term of equation (1) can also be zero, but it
does not mean the elements of this individual remained stable
during the whole simulation.

To properly define a simulation time value, a large popula-
tion with 6000 individuals was instantiated and simulations
with time limits from 1 to 20 seconds were executed to
determine the fitness values. The result of this experiment is
shown in Figure 8.

Fig. 8. Impact of the simulation time on the fitness function (without
constraints)

Results showed the average and standard deviation of the
fitness values for the 6000 individuals. Values decreased in a
similar proportion when the simulation time increased from 1
to 8 seconds. When it is longer than 9 seconds, the standard
deviation started to increase and the average fitness value
remained around 0.08. After 8 seconds, as the simulation time
increases, more elements will enter in rest state. Therefore,
measuring velocity after 8 seconds is not interesting for the
proposed fitness function, once the number of objects in rest
state will not allow to evaluate properly those which were
moving in the beginning of simulation. Eight seconds were
set as time limit for simulation in all experiments reported
below.

Parameters related to the GA were set empirically, i.e.
population size was 200 individuals, maximum number of
generations was 1000, tournament size was 2, mutation rate
was 5% and crossover rate was 95%. Some other constant
values were used in the generation of levels:

• Amount of birds: 3

• Positions of birds: (140, 210), (200, 100), (260, 100))

• Slingshot position:(150, 160)

• Position of the first column of the blocks: (500, 100)

• Max horizontal distances between columns: 300

• Max number of columns in a level: 7

• Max number of rows in a level: 7

Since the max amount of columns and rows is 7, the value
of Maxb is 49. The probability table to initialize and mutate
the individuals is the same defined in Table I.

A. Expressivity Analysis

As described in [15], the expressivity of the generator
is the space of all levels it can generate and a metric that
indicates the generator strengths and weaknesses. This metric
can be calculated by generating a large number of levels and
evaluating their meaningful aspects.

In the present paper, three measures are defined based on
metrics used in [20] and [15]: frequency, linearity and density.
Frequency evaluates the number of times a block occurs in the
level generated. Linearity provides the average height taking
into account the height of all columns within the level. Density
measures the columns distribution among the level’s area,
considering the distance between them.

As mentioned in Section III, the maximum amount of
blocks B is a parameter defined by the user and the compu-
tational tests conducted will take into account three different
values for B: 10, 20 and 30. For each value of B, the GA
was executed 200 times and the best level from each run was
evaluated in terms of frequency, linearity and density.

First experiment evaluates the levels with B = 10, Figure
9 shows an example of a final level generated within 200
executions. The GA could create a level with exact 10 blocks,
satisfying the constraints related to blocks amount. It also
included two pigs in the first two columns.

Fig. 9. Example of a level generated with B = 10

Figure 10 shows the average and standard deviation of each
block frequency, taking into account the best level generated
in each of the 200 executions of the GA. Results showed the
average of pigs (element 22) is 1.6 and its standard deviation

is approximately 0.7. Pigs have the bigger average in this
experiments, this can be related to the impact of a pig in the
fitness when the B is small. In this case, the insertion of a
pig into the level may significantly reduce the fitness of the
individual. Beyond the pigs, the most used are blocks 1, 8, 12
and 14. These values show that the best levels generated for
B = 10 also match the probability values defined in Table I.

Fig. 10. Average and standard deviation of the blocks frequency for levels
with B = 10.

Figure 11 shows one of the levels generated with B = 20.
The amount of blocks in the level is exactly 20, which means
that the generator could satisfy also this user constraint. Blocks
frequency is presented in Figure 12 for the best 200 levels
generated by the GA.

Fig. 11. Example of a level generated with B = 20

These levels have on average two pigs (element 22) with
standard deviation around 0.6, which means the levels gener-
ated hardly had zero pigs. Blocks 1, 3, 9, and 14 show a higher
frequency as expected, taking into account the values of the
blocks in the probability table.

Figure 13 shows an example of the best level generated
with B = 30 blocks. The level also has the amount of blocks
defined by the user. Figure 14 shows the frequency metric for
this case where the amount of pigs is larger than 2.

Values of frequency showed the blocks that occurred more
frequently in the best levels, but it did not give an idea
about their orientation. This can be obtained combining the
information provided by linearity and density metrics. Table
II compares these metrics for the three defined level types, in

Fig. 12. Average and standard deviation of the blocks frequency for levels
with B = 20.

which the average (µ) and standard deviation (σ) values for the
best 200 levels generated are depicted. Linearity values have
both average (µ) and standard deviation (σ) for the column
height values increasing when the amount of blocks increase.
The σ values show that the levels does not have structures
with similar heights, indicating a variation in the arrangement
of structures generated.

Fig. 13. Example of a level generated with B = 30

The density of the level refers to how sparse are the
columns in the level. A low density indicates columns are very
separated and a high density indicates they are very close to
each other. In the three experiments, density showed values
around 0.5, which indicates the columns are arranged in a
balanced way, i.e. they are disposed through the whole level
without large spaces between them.

TABLE II. LINEARITY AND DENSITY FOR THE LEVELS WITH 10, 20
AND 30 BLOCKS.

B Linearity (µ|σ) Density
10 1.9937|1.9404 0.4344
20 2.6455|2.3532 0.5013
30 3.8581|2.7254 0.6444

V. CONCLUSIONS AND FUTURE WORKS

This paper has presented a genetic algorithm to gener-
ate Angry Birds levels, focusing on the creation of stable
structures. The algorithm initializes its individuals based on
a probability table to control the block types that the levels

Fig. 14. Average and standard deviation of the blocks frequency for levels
with B = 30.

will have. A level is represented by an array of columns
composed of blocks and pigs. The evolutionary process uses
crossover and mutation to generate new candidate levels. The
crossover operation acts in the recombination of columns and
the mutation directly affects the elements, randomly changing
block type and distance between columns with a certain
probability.

All the individuals were evaluated by a fitness function
which considers the velocity of the blocks during a simulation
of the game. It also considers the amount of blocks and pigs
inside the level. The amount of blocks is a parameter B of the
fitness function and can be controlled by the user. Therefore,
the levels with an amount of blocks closer to B will have
higher fitness

We implemented a clone of the game for supporting our
simulation-based fitness function. The clone was implemented
separated from the level generator in such a way that it can
be reused in experiments with other content generators.

The level generator was evaluated in terms of expressivity.
Three metrics were defined for the evaluation of the generated
levels: frequency, linearity and density. They indicated the
block types inside the level and their orientation. The results
showed the level generator can meet the restriction related to
blocks by creating levels whose structures do not have similar
heights, which indicates a variation in their arrangement.

One of the future works of this research is to improve the
fitness function aiming to evaluate the playability of the levels.
In the present study, we could generate stable structures with
a certain amount of pigs and the next step will ensure that the
generated levels are playable by the simulation of the game
with an agent controlled by the computer.

REFERENCES

[1] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1:1–1:22, 2013.

[2] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
procedural content generation: A taxonomy and survey,” Computational
Intelligence and AI in Games, IEEE Transactions on, vol. 3, no. 3, pp.
172–186, 2011.

[3] N. Shaker, J. Togelius, and M. J. Nelson, Eds., Procedural Content
Generation in Games: a Textbook and an Overview of Current Research.
pcgbook.com, 2013.

[4] S. Gearbox. (2009) Borderlands. http://www.borderlandsthegame.com.
[Online; accessed 15-April-2014].

[5] S. Dahlskog and J. Togelius, “Patterns and procedural content gen-
eration: Revisiting Mario in world 1 level 1,” in ACM International
Conference Proceeding Series, 2012.

[6] I. Bell and D. Braben. (1984) Elite. http://www.iancgbell.clara.net/elite/.
[Online; accessed 15-April-2014].

[7] G. N. Yannakakis and J. Togelius, “Experience-Driven Procedural
Content Generation,” in Affective Computing, IEEE Transactions on,
vol. 2, no. 3, 2011, pp. 147–161.

[8] V. Valtchanov and J. A. Brown, “Evolving dungeon crawler levels
with relative placement,” in Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering, ser. C3S2E
’12. New York, NY, USA: ACM, 2012, pp. 27–35.

[9] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in the
galactic arms race video game,” in Proceedings of the 5th international
conference on Computational Intelligence and Games, ser. CIG’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 241–248.

[10] A. Liapis, G. N. Yannakakis, and J. Togelius, “Optimizing visual prop-
erties of game content through neuroevolution.” in AIIDE, V. Bulitko
and M. O. Riedl, Eds. The AAAI Press, 2011.

[11] C. Browne, “Automatic generation and evaluation of recombination
games.” Ph.D. dissertation, Queensland University of Technology, 2008.

[12] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th annual conference on Genetic and evolutionary
computation, ser. GECCO ’11. New York, NY, USA: ACM, 2011, pp.
395–402.

[13] M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on, 2011, pp. 289–296.

[14] F. Mourato, M. P. dos Santos, and F. Birra, “Automatic level generation
for platform videogames using genetic algorithms,” in Proceedings of
the 8th International Conference on Advances in Computer Entertain-
ment Technology, ser. ACE ’11. New York, NY, USA: ACM, 2011,
pp. 8:1–8:8.

[15] M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games.” in
CIG. IEEE, 2013, pp. 1–8.

[16] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach.” in AIIDE. AAAI,
2013.

[17] ——, “Ropossum: An authoring tool for designing, optimizing and
solving cut the rope levels.” in AIIDE, G. Sukthankar and I. Horswill,
Eds. AAAI, 2013.

[18] R. Entertainment. (2009) Angry birds game. http://www.rovio.com/en/
our-work/games/view/1/angry-birds. [Online; accessed 15-April-2014].

[19] Unity. (2014) Unity game engine. https://unity3d.com. [Online; ac-
cessed 15-April-2014].

[20] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of procedural level generators in the mario ai
framework.” in Proceedings of Foundations of Digital Games, 2014.

